scispace - formally typeset
Search or ask a question
Author

Rajesh Agarwal

Bio: Rajesh Agarwal is an academic researcher from University of Montana. The author has contributed to research in topics: Silibinin & Apoptosis. The author has an hindex of 92, co-authored 416 publications receiving 29843 citations. Previous affiliations of Rajesh Agarwal include University of Lucknow & Anschutz Medical Campus.
Topics: Silibinin, Apoptosis, Cell growth, Cell cycle, Cancer


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: Green tea may protect against cancer by causing cell cycle arrest and inducing apoptosis, and needs to be evaluated in human trials.
Abstract: Background and Purpose: The polyphenolic compounds present in green tea show cancer chemopreventive effects in many animal tumor models. Epidemiologic studies have also suggested that green tea consumption might be effective in the prevention of certain human cancers. We investigated the effect of green tea polyphenols and the major constituent, epigallocatechin-3-gallate, on the induction of apoptosis (programmed cell death) and regulation of cell cycle in human and mouse carcinoma cells. Methods: Human epidermoid carcinoma cells (cell line A431), human carcinoma keratinocyte (cell line HaCaT), human prostate carcinoma cells (cell line DU145), mouse lymphoma cells (cell line L5178Y), and normal human epidermal keratinocytes (NHEKs) were used. Apoptosis was assessed by 1) the formation of internucleosomal DNA fragments by agarose gel electrophoresis, 2) confocal microscopy, and 3) flow cytometry after tagging the DNA fragments by fluorescence label. The distribution of cells in different phases of the cell cycle was analyzed by flow cytometry. Results: Treatment of A431 cells with green tea polyphenols and its components, epigallocatechin-3-gallate, epigallocatechin, and epicatechin-3-gallate, resulted in the formation of internucleo-somal DNA fragments, characteristic of apoptosis. Treatment with epigallocatechin-3-gallate also resulted in apoptosis in HaCaT, L5178Y, and DU145 cells, but not in NHEK. Confocal microscopy and flow cytometry confirmed the findings. The DNA cell cycle analysis showed that in A431 cells, epigallocatechin-3-gallate treatment resulted in arrest in the G 0 -G 1 phase of the cell cycle and a dose-dependent apoptosis. Conclusions: Green tea may protect against cancer by causing cell cycle arrest and inducing apoptosis. It needs to be evaluated in human trials.

776 citations

Journal ArticleDOI
TL;DR: The protective effects of silymarin and its major active constituent, silibinin, studied in various tissues, suggest a clinical application in cancer patients as an adjunct to established therapies, to prevent or reduce chemotherapy as well as radiotherapy-induced toxicity.

369 citations

Journal ArticleDOI
TL;DR: Silymarin can provide substantial protection against different stages of UVB-induced carcinogenesis, possibly via its strong antioxidant properties.
Abstract: Background: Nonmelanoma skin cancer is the most common cancer among humans; solar UV is its major cause. Therefore, it is important to identify agents that can offer protection against this cancer. Purpose: We evaluated the protective effects of silymarin, a flavonoid compound isolated from the milk thistle plant, against UVB radiation-induced nonmelanoma skin cancer in mice and delineated the mechanism(s) of its action. Methods: For long-term studies, three different protocols of treatment were employed, each evaluating protection by silymarin at a different stage of carcinogenesis. Female SKH-I hairless mice were subjected to 1) UVB-induced tumor initiation followed by phorbol ester-mediated tumor promotion, 2) 7,12-dimethylbenz[a]anthracene-induced tumor initiation followed by UVB-mediated tumor promotion, and 3) UVB-induced complete carcinogenesis. Forty mice were used in each protocol and were divided into control and treatment groups. Silymarin was applied topically at a dose of 9 mg per application before UVB exposure, and its effects on tumor incidence (% of mice with tumors), tumor multiplicity (number of tumors per mouse), and average tumor volume per mouse were evaluated. In short-term studies, the following parameters were measured: formation of sunburn and apoptotic cells, skin edema, epidermal catalase and cyclooxygenase (COX) activities, and enzymatic activity and messenger RNA (mRNA) expression for ornithine decarboxylase (ODC), a frequently observed marker at tumor promotion stage. Fisher's exact test was used to evaluate differences in tumor incidence, two-sample Wilcoxon rank sum test was used for tumor multiplicity and tumor volume, and Student's t test was used for all other measurements. All statistical tests were two-sided. Results: In the protocol with UVB-induced tumor initiation, silymarin treatment reduced tumor incidence from 40% to 20% (P = .30), tumor multiplicity by 67% (P = .10), and tumor volume per mouse by 66% (P = .14). In the protocol with UVB-induced tumor promotion, silymarin treatment reduced tumor incidence from 100% to 60% (P<.003), tumor multiplicity by 78% (P<.0001), and tumor volume per mouse by 90% (P<.003). The effect of silymarin was much more profound in the protocol with UVB-induced complete carcinogenesis, where tumor incidence was reduced from 100% to 25% (P<.0001), tumor multiplicity by 92% (P<.0001), and tumor volume per mouse by 97% (P<.0001). In short-term experiments, silymarin application resulted in statistically significant inhibition in UVB-caused sunburn and apoptotic cell formation, skin edema, depletion of catalase activity, and induction of COX and ODC activities and ODC mRNA expression. Conclusions and Implication: Silymarin can provide substantial protection against different stages of UVB-induced carcinogenesis, possibly via its strong antioxidant properties. Clinical testing of its usefulness is warranted.

350 citations

Journal Article
TL;DR: Findings suggest a need for in vivo studies with this combination of silibinin and doxorubicin against prostate cancer, which is limited because of high systemic toxicity, and might be relevant for a clinical application in prostate cancer patients.
Abstract: Purpose: We recently demonstrated the strong anticancer efficacy of silibinin,an active constituent of a widely consumed dietary supplement milk thistle extract, against human prostate cancer cells in culture and nude mice xenografts. We also observed that pharmacologically achievable concentrations of silibinin in animal studies were in the range of 25–100 μm, depending on the dose regimen, which did not show any apparent toxicity to the animals. In this study, we assessed whether silibinin synergizes the therapeutic potential of the chemotherapeutic drug doxorubicin against prostate cancer, the effectiveness of which is limited because of high systemic toxicity. Experimental Design: Prostate cancer cells were treated with silibinin and doxorubicin, either alone or in combination, and cell growth was determined by manual cell counting. Cell cycle progression was assessed by saponin/propidium iodide staining and fluorescence-activated cell sorter analysis. Protein levels of cell cycle regulators were determined by Western blotting, and cdc2/p34 kinase activity was analyzed by in-beads kinase assay. Apoptosis was quantified by annexin V/propidium iodide staining and fluorescence-activated cell sorter analysis. Results: Silibinin strongly synergized the growth-inhibitory effect of doxorubicin in prostate carcinoma DU145 cells (combination index, 0.235–0.587), which was associated with a strong G 2 -M arrest in cell cycle progression, showing 88% cells in G 2 -M phase by this combination compared with 19 and 41% of cells in silibinin and doxorubicin treatment alone, respectively. The underlying mechanism of G 2 -M arrest showed a strong inhibitory effect of combination on cdc25C, cdc2/p34, and cyclin B1 protein expression and cdc2/p34 kinase activity. More importantly, this combination caused 41% apoptotic cell death compared with 15% by either agent alone. Silibinin and doxorubicin alone as well as in combination were also effective in inhibiting the growth of androgen-dependent prostate carcinoma LNCaP cells. Conclusion: These findings suggest a need for in vivo studies with this combination in preclinical prostate cancer models. Positive outcomes might be relevant for a clinical application in prostate cancer patients.

332 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The paradoxical roles of the tumor microenvironment during specific stages of cancer progression and metastasis are discussed, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.
Abstract: Cancers develop in complex tissue environments, which they depend on for sustained growth, invasion and metastasis. Unlike tumor cells, stromal cell types within the tumor microenvironment (TME) are genetically stable and thus represent an attractive therapeutic target with reduced risk of resistance and tumor recurrence. However, specifically disrupting the pro-tumorigenic TME is a challenging undertaking, as the TME has diverse capacities to induce both beneficial and adverse consequences for tumorigenesis. Furthermore, many studies have shown that the microenvironment is capable of normalizing tumor cells, suggesting that re-education of stromal cells, rather than targeted ablation per se, may be an effective strategy for treating cancer. Here we discuss the paradoxical roles of the TME during specific stages of cancer progression and metastasis, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.

5,396 citations

Journal Article
TL;DR: Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional, and suggestions are made where such possibilities may be worth pursuing.
Abstract: Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.

4,663 citations

Journal ArticleDOI
TL;DR: Flavonoids in regularly consumed foods may reduce the risk of death from coronary heart disease in elderly men and showed an inverse relation with incidence of myocardial infarction.

4,440 citations