scispace - formally typeset
Search or ask a question

Showing papers by "Rajesh Kumar published in 2019"


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott, T. D. Abbott, Sheelu Abraham  +1145 moreInstitutions (8)
TL;DR: In this paper, the authors presented the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma during the first and second observing runs of the advanced GW detector network.
Abstract: We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma™ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 Mâ™ and 84.4-11.1+15.8 Mâ™ and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1.

2,336 citations


Journal ArticleDOI
TL;DR: Adsorption technologies are a low-cost alternative, easily used in developing countries where there is a dearth of advanced technologies, skilled personnel, and available capital, and adsorption appears to be the most broadly feasible pharmaceutical removal method.
Abstract: In the last few decades, pharmaceuticals, credited with saving millions of lives, have emerged as a new class of environmental contaminant. These compounds can have both chronic and acute harmful effects on natural flora and fauna. The presence of pharmaceutical contaminants in ground waters, surface waters (lakes, rivers, and streams), sea water, wastewater treatment plants (influents and effluents), soils, and sludges has been well doccumented. A range of methods including oxidation, photolysis, UV-degradation, nanofiltration, reverse osmosis, and adsorption has been used for their remediation from aqueous systems. Many methods have been commercially limited by toxic sludge generation, incomplete removal, high capital and operating costs, and the need for skilled operating and maintenance personnel. Adsorption technologies are a low-cost alternative, easily used in developing countries where there is a dearth of advanced technologies, skilled personnel, and available capital, and adsorption appears to be the most broadly feasible pharmaceutical removal method. Adsorption remediation methods are easily integrated with wastewater treatment plants (WWTPs). Herein, we have reviewed the literature (1990-2018) illustrating the rising environmental pharmaceutical contamination concerns as well as remediation efforts emphasizing adsorption.

1,170 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott2, T. D. Abbott, Fausto Acernese3  +1157 moreInstitutions (70)
TL;DR: In this paper, the authors improved initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data.
Abstract: On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M when allowing for large component spins, and to lie between 1.16 and 1.60 M (with a total mass 2.73-0.01+0.04 M) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300-230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.

715 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott2, T. D. Abbott, Sheelu Abraham  +1138 moreInstitutions (6)
TL;DR: In this paper, the authors present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity, including the best-fit waveform from the data and the consistency with detector noise.
Abstract: The detection of gravitational waves by Advanced LIGO and Advanced Virgo provides an opportunity to test general relativity in a regime that is inaccessible to traditional astronomical observations and laboratory tests. We present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity. One test subtracts the best-fit waveform from the data and checks the consistency of the residual with detector noise. The second test checks the consistency of the low- and high-frequency parts of the observed signals. The third test checks that phenomenological deviations introduced in the waveform model (including in the post-Newtonian coefficients) are consistent with 0. The fourth test constrains modifications to the propagation of gravitational waves due to a modified dispersion relation, including that from a massive graviton. We present results both for individual events and also results obtained by combining together particularly strong events from the first and second observing runs of Advanced LIGO and Advanced Virgo, as collected in the catalog GWTC-1. We do not find any inconsistency of the data with the predictions of general relativity and improve our previously presented combined constraints by factors of 1.1 to 2.5. In particular, we bound the mass of the graviton to be mg≤4.7×10-23 eV/c2 (90% credible level), an improvement of a factor of 1.6 over our previously presented results. Additionally, we check that the four gravitational-wave events published for the first time in GWTC-1 do not lead to stronger constraints on alternative polarizations than those published previously.

482 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1215 moreInstitutions (134)
TL;DR: In this paper, the mass, spin, and redshift distributions of binary black hole (BBH) mergers with LIGO and Advanced Virgo observations were analyzed using phenomenological population models.
Abstract: We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45 M and a power-law index of (90% credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.

464 citations


Journal ArticleDOI
Maggie Tse1, Haocun Yu1, N. Kijbunchoo2, A. Fernandez-Galiana1  +207 moreInstitutions (34)
TL;DR: During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% and 50% respectively.
Abstract: The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1).

422 citations


Journal ArticleDOI
TL;DR: In this article, the performance of metal-organic frameworks (MOFs) for aqueous phase sorptive removal of emerging contaminants (ECs) from water has been evaluated.

392 citations


Journal ArticleDOI
Tomotada Akutsu1, Masaki Ando1, Masaki Ando2, Koya Arai2  +199 moreInstitutions (48)
TL;DR: KAGRA as discussed by the authors is a 2.5-generation GW detector with two 3'km baseline arms arranged in an 'L' shape, similar to the second generations of Advanced LIGO and Advanced Virgo, but it will be operating at cryogenic temperatures with sapphire mirrors.
Abstract: The recent detections of gravitational waves (GWs) reported by the LIGO and Virgo collaborations have made a significant impact on physics and astronomy. A global network of GW detectors will play a key role in uncovering the unknown nature of the sources in coordinated observations with astronomical telescopes and detectors. Here we introduce KAGRA, a new GW detector with two 3 km baseline arms arranged in an ‘L’ shape. KAGRA’s design is similar to the second generations of Advanced LIGO and Advanced Virgo, but it will be operating at cryogenic temperatures with sapphire mirrors. This low-temperature feature is advantageous for improving the sensitivity around 100 Hz and is considered to be an important feature for the third-generation GW detector concept (for example, the Einstein Telescope of Europe or the Cosmic Explorer of the United States). Hence, KAGRA is often called a 2.5-generation GW detector based on laser interferometry. KAGRA’s first observation run is scheduled in late 2019, aiming to join the third observation run of the advanced LIGO–Virgo network. When operating along with the existing GW detectors, KAGRA will be helpful in locating GW sources more accurately and determining the source parameters with higher precision, providing information for follow-up observations of GW trigger candidates.

298 citations


Journal ArticleDOI
B. P. Abbott, Richard J. Abbott, T. D. Abbott, Sheelu Abraham  +1130 moreInstitutions (5)
TL;DR: In this article, a cross-correlation analysis on the data from Advanced LIGO's second observing run (O2) is presented, which combines with the results of the first observing run, and upper limits on the normalized energy density in gravitational waves at the 95% credible level of ΩGW < 6.0 × 10−8 at 25 Hz for a background of compact binary coalescences.
Abstract: The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study, we present the results from a cross-correlation analysis on data from Advanced LIGO’s second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of ΩGW < 6.0 × 10−8 for a frequency-independent (flat) background and ΩGW < 4.8 × 10−8 at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O2 sensitivity.

249 citations


Journal ArticleDOI
TL;DR: In this article, the synthesis and characterization of NiO-ZnO nanodisks synthesized through a facile hydrothermal method was reported. And the morphological characterizations confirmed the formation of well-defined nanodisk in high density with an average thickness of 60.5 µm.
Abstract: This paper reports the synthesis and characterization of NiO-ZnO nanodisks synthesized through a facile hydrothermal method. The morphological characterizations confirmed the formation of well-defined nanodisks in high density with an average thickness of 60 ± 5 nm. The x-ray diffraction analysis confirmed the well incorporation of the NiO into the matrix of ZnO crystal and the average crystallite size for the NiO-ZnO nanodisks was found to be 39.71 nm. The compositional analysis revealed the formation of pure NiO-ZnO nanostructures. The synthesized NiO-ZnO nanodisks were used as electrode materials to fabricate Sulfur dioxide (SO2) gas sensors and the gas sensor response and recovery times were systematically analyzed with respect to the operating temperatures and the SO2 gas concentration. The observed sensor gas response, response time and recovery time of the fabricated NiO-ZnO nanodisks based gas sensor were 16.25, 52 s and 41 s, respectively, towards 20 ppm SO2 gas at an optimized temperature of 240 °C. Thus, it is believed that the NiO-ZnO nanodisks could be a promising candidate for the fabrication of efficient gas sensors towards toxic and hazardous gases.

187 citations


Journal ArticleDOI
TL;DR: Estimated total sleep duration of 6-8 h per day is associated with the lowest risk of deaths and major cardiovascular events and daytime napping isassociated with increased risks of major cardiovascular Events but not in those sleeping ≤6’h/night.
Abstract: Aims To investigate the association of estimated total daily sleep duration and daytime nap duration with deaths and major cardiovascular events. Methods and results We estimated the durations of total daily sleep and daytime naps based on the amount of time in bed and self-reported napping time and examined the associations between them and the composite outcome of deaths and major cardiovascular events in 116 632 participants from seven regions. After a median follow-up of 7.8 years, we recorded 4381 deaths and 4365 major cardiovascular events. It showed both shorter (≤6 h/day) and longer (>8 h/day) estimated total sleep durations were associated with an increased risk of the composite outcome when adjusted for age and sex. After adjustment for demographic characteristics, lifestyle behaviours and health status, a J-shaped association was observed. Compared with sleeping 6-8 h/day, those who slept ≤6 h/day had a non-significant trend for increased risk of the composite outcome [hazard ratio (HR), 1.09; 95% confidence interval, 0.99-1.20]. As estimated sleep duration increased, we also noticed a significant trend for a greater risk of the composite outcome [HR of 1.05 (0.99-1.12), 1.17 (1.09-1.25), and 1.41 (1.30-1.53) for 8-9 h/day, 9-10 h/day, and >10 h/day, Ptrend Conclusion Estimated total sleep duration of 6-8 h per day is associated with the lowest risk of deaths and major cardiovascular events. Daytime napping is associated with increased risks of major cardiovascular events and deaths in those with >6 h of nighttime sleep but not in those sleeping ≤6 h/night.

Journal ArticleDOI
TL;DR: The LIGO Scientific Collaboration and the Virgo Collaboration have cataloged eleven confidently detected gravitational-wave events during the first two observing runs of the advanced detector era as mentioned in this paper.
Abstract: The LIGO Scientific Collaboration and the Virgo Collaboration have cataloged eleven confidently detected gravitational-wave events during the first two observing runs of the advanced detector era. All eleven events were consistent with being from well-modeled mergers between compact stellar-mass objects: black holes or neutron stars. The data around the time of each of these events have been made publicly available through the gravitational-wave open science center. The entirety of the gravitational-wave strain data from the first and second observing runs have also now been made publicly available. There is considerable interest among the broad scientific community in understanding the data and methods used in the analyses. In this paper, we provide an overview of the detector noise properties and the data analysis techniques used to detect gravitational-wave signals and infer the source properties. We describe some of the checks that are performed to validate the analyses and results from the observations of gravitational-wave events. We also address concerns that have been raised about various properties of LIGO-Virgo detector noise and the correctness of our analyses as applied to the resulting data.

Journal ArticleDOI
TL;DR: In this article, the authors describe the data recorded by Advanced LIGO and Advanced Virgo during their first and second observing runs, and the main data products are the gravitational-wave strain arrays, released as time series sampled at 16384 Hz.
Abstract: Advanced LIGO and Advanced Virgo are actively monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are the gravitational-wave strain arrays, released as time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at this http URL, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1222 moreInstitutions (135)
TL;DR: In this article, the results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast spinning neutron stars with an asymmetry around their rotation axis, were presented.
Abstract: We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. Three different semicoherent methods are used to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from -1×10-8 to 2×10-9 Hz/s. None of these searches has found clear evidence for a CW signal, so upper limits on the gravitational-wave strain amplitude are calculated, which for this broad range in parameter space are the most sensitive ever achieved.

Journal ArticleDOI
TL;DR: Use of solid fuels for cooking is a risk factor for mortality and cardiorespiratory disease and Continued efforts to replace solid fuels with cleaner alternatives are needed to reduce premature mortality and morbidity in developing countries.
Abstract: Background: Household air pollution (HAP) from solid fuel use for cooking affects 2.5 billion individuals globally and may contribute substantially to disease burden. However, few prospective studi...

Journal ArticleDOI
TL;DR: Seasonal variations in the concentrations and fate of 20 selected pharmaceuticals and personal care products were investigated over one year in a wastewater treatment plant in New Zealand, hinting that optimally operated Bardenpho can be equally effective in the removal of emerging contaminants as MBR.

Journal ArticleDOI
TL;DR: FEV1 is an independent and generalisable predictor of mortality, cardiovascular disease, and respiratory hospitalisation, even across the clinically normal range (mild to moderate impairment), and this pattern persisted in subgroup analyses considering country income level and various baseline risk factors.

Journal ArticleDOI
TL;DR: In the present study, >250 research articles published on various emerging technologies used for arsenic remediation in rural and peri-urban areas of LA countries are critically reviewed and insights into low cost emergent adsorbents with an implementation potential in Latin America are provided.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a search for gravitational-wave emission from 221 pulsars with rotation frequencies of 10$ Hz using advanced LIGO data from its first and second observing runs spanning 2015-2017.
Abstract: We present a search for gravitational waves from 221 pulsars with rotation frequencies $\gtrsim 10$ Hz. We use advanced LIGO data from its first and second observing runs spanning 2015-2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the $l = m = 2$ mass quadrupole mode, with a frequency at twice that of the pulsar's rotation, and from the $l = 2$, $m = 1$ mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the $l = m = 2$ mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars' spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711-6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of $10^{38}$ kg m$^2$ for the star's moment of inertia, and imply a gravitational-wave-derived upper limit on the star's ellipticity of $1.2\!\times\!10^{-8}$. We also place new limits on the emission amplitude at the rotation frequency of the pulsars.

Journal ArticleDOI
TL;DR: This research was designed to load a glycopeptide antibiotic named vancomycin on citrate-capped silver nanoparticles to enhance its antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria.

Journal ArticleDOI
TL;DR: The presented MOF exhibits excellent selectivity toward cationic methylene blue (MB) dye adsorption and its separation over neutral (neutral red) and anionic (methyl orange) dyes, and simultaneous one-pot photocatalytic reduction of Cr(vi) and dye degradation has been demonstrated with high efficiency using the same catalyst.
Abstract: A Cd(ii)-based metal-organic framework (MOF) {[Cd(PA)(4,4'-bpy)2](H2O)}n (where, PA = pamoic acid, and bpy = bipyridine) has been demonstrated to have trifunctional properties, namely as (i) an efficient and selective adsorbent for dyes, (ii) a visible-light-active photocatalyst for the degradation of dyes and (iii) a photocatalyst for Cr(vi) reduction. Hence, this material has a very good potential for application in environmental remediation. In particular, the MOF exhibits excellent selectivity toward cationic methylene blue (MB) dye adsorption and its separation over neutral (neutral red) and anionic (methyl orange) dyes. In addition, the catalyst has also been explored for the photocatalytic degradation of less adsorbed dyes, such as methyl orange (MO) and rhodamine B (RhB). Subsequently, the potential of the presented MOF for the photocatalytic reduction of Cr(vi) under visible light irradiation has also been investigated and the catalyst was found to reduce 95% of Cr(vi) within 3 h. Moreover, simultaneous one-pot photocatalytic reduction of Cr(vi) and dye degradation has been demonstrated with high efficiency using the same catalyst. The mechanism of adsorption could be correlated to the presence of peripheral hydroxyl groups in the MOF and the photocatalytic activity observed under visible light could be attributed to the optical properties of Cd-MOF. In principle, this work could broaden the utilization of single metal organic platform for multifunctional applications toward environmental remediation.

Journal ArticleDOI
TL;DR: In this paper, the authors perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state, and find that all scenarios from prompt collapse to long-lived or even stable remnants are possible.
Abstract: GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05 $M_\odot$, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67 $M_\odot$ for the case that the merger results in a hypermassive neutron star.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1229 moreInstitutions (141)
TL;DR: In this article, the authors presented a search for gravitational waves from 222 pulsars with rotation frequencies ≳10 Hz using advanced LIGO data from its first and second observing runs spanning 2015-2017, which provides the highest-sensitivity gravitational-wave data so far obtained.
Abstract: We present a search for gravitational waves from 222 pulsars with rotation frequencies ≳10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015–2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsar’s rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars’ spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711−6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the star’s moment of inertia, and imply a gravitational-wave-derived upper limit on the star’s ellipticity of 1.2 × 10−8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars.

Journal ArticleDOI
TL;DR: Blood miRNAs, which circulate in a highly stable, cell-free form, show promise as novel potential biomarkers for early detection of HCC, and six of these are potential prognostic markers for overall survival.
Abstract: Hepatocellular carcinoma (HCC) is the fifth most common cancer with high mortality, due to late diagnosis and limited treatment options. Blood miRNAs, which circulate in a highly stable, cell-free form, show promise as novel potential biomarkers for early detection of HCC. Whole miRNome profiling was performed to identify deregulated miRNAs between HCC and normal healthy (NH) volunteers. These deregulated miRNAs were validated in an independent cohort of HCC, NH and chronic Hepatitis B (CHB) volunteers and finally in a 3rd cohort comprising NH, CHB, cirrhotic and HCC volunteers to evaluate miRNA changes during disease progression. The associations between circulating miRNAs and liver-damage markers, clinicopathological characteristics and survival outcomes were analysed to identify prognostic markers. Twelve miRNAs are differentially expressed between HCC and NH individuals in all three cohorts. Five upregulated miRNAs (miR-122-5p, miR-125b-5p, miR-885-5p, miR-100-5p and miR-148a-3p) in CHB, cirrhosis and HCC patients are potential biomarkers for CHB infection, while miR-34a-5p can be a biomarker for cirrhosis. Notably, four miRNAs (miR-1972, miR-193a-5p, miR-214-3p and miR-365a-3p) can distinguish HCC from other non-HCC individuals. Six miRNAs are potential prognostic markers for overall survival.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1222 moreInstitutions (129)
TL;DR: In this paper, the authors revisited the binary neutron star coalescence GW170817 and focused on longer signal durations, up until the end of the second Advanced LIGO-Virgo observing run, which was 8.5 days after the coalescence.
Abstract: One unanswered question about the binary neutron star coalescence GW170817 is the nature of its post-merger remnant. A previous search for post-merger gravitational waves targeted high-frequency signals from a possible neutron star remnant with a maximum signal duration of 500 s. Here, we revisit the neutron star remnant scenario and focus on longer signal durations, up until the end of the second Advanced LIGO-Virgo observing run, which was 8.5 days after the coalescence of GW170817. The main physical scenario for this emission is the power-law spindown of a massive magnetar-like remnant. We use four independent search algorithms with varying degrees of restrictiveness on the signal waveform and different ways of dealing with noise artefacts. In agreement with theoretical estimates, we find no significant signal candidates. Through simulated signals, we quantify that with the current detector sensitivity, nowhere in the studied parameter space are we sensitive to a signal from more than 1 Mpc away, compared to the actual distance of 40 Mpc. However, this study serves as a prototype for post-merger analyses in future observing runs with expected higher sensitivity.

Journal ArticleDOI
TL;DR: In this paper, the first and second observing runs of the Advanced LIGO and Virgo detector network were used to obtain the first standard-siren measurement of the Hubble constant.
Abstract: This paper presents the gravitational-wave measurement of the Hubble constant ($H_0$) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of $H_0$. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is $H_0 = 69^{+16}_{-8}$ km/s/Mpc (68.3\% of the highest density posterior interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4\%) over the GW170817-only value of $69^{+17}_{-8}$ km/s/Mpc. A significant additional contribution currently comes from GW170814, a loud and well-localized detection from a part of the sky thoroughly covered by the Dark Energy Survey. With numerous detections anticipated over the upcoming years, an exhaustive understanding of other systematic effects are also going to become increasingly important. These results establish the path to cosmology using gravitational-wave observations with and without transient electromagnetic counterparts.

Journal ArticleDOI
TL;DR: The survey findings will be useful in making informed decisions about introduction of upcoming dengue vaccines in India, and constructed catalytic models to estimate force of infection.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1271 moreInstitutions (142)
TL;DR: In this article, the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo were presented.
Abstract: We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of ∼10-9 Mc2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1192 moreInstitutions (129)
TL;DR: In this paper, the authors reported on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network.
Abstract: Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run.

Journal ArticleDOI
TL;DR: In this article, the authors present results of a search for binary black hole mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo.
Abstract: When formed through dynamical interactions, stellar-mass binary black holes may retain eccentric orbits ($e>0.1$ at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically-formed binaries from isolated binary black hole mergers. Current template-based gravitational-wave searches do not use waveform models associated to eccentric orbits, rendering the search less efficient to eccentric binary systems. Here we present results of a search for binary black hole mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. The search uses minimal assumptions on the morphology of the transient gravitational waveform. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models.