scispace - formally typeset
Search or ask a question
Author

Rajib Chakraborty

Bio: Rajib Chakraborty is an academic researcher from University of Calcutta. The author has contributed to research in topics: Lithium niobate & Coating. The author has an hindex of 10, co-authored 62 publications receiving 288 citations. Previous affiliations of Rajib Chakraborty include Indian Institute of Technology Kharagpur.


Papers
More filters
Proceedings ArticleDOI
15 Jun 2015
TL;DR: In this article, a multimode interference (MMI) based on self imaging phenomenon is investigated using matrixapproach using singlemode-multimode-singlemode and multimodesinglemodestructures of optical fiber.
Abstract: Multimode Interference (MMI) based on self imaging phenomenon is investigated using matrix approach. Experimentally MMI is verified using singlemode-multimode-singlemode and multimodesinglemode structures of optical fiber. The results obtained are also verified by BPM technique.
Journal ArticleDOI
01 Nov 2017-Optik
TL;DR: In this paper, the authors derived the expression for homogeneous sensitivity, defined as the change of effective refractive index of the guiding mode to the change in cover layer refractive indices, using the basic grating coupler theory.
Journal ArticleDOI
TL;DR: In this paper, different low temperature bonding for fiber-optic sensors is described and physical explanation of different bonding methods is also given, which can eliminate the problem of thermal mismatch due to introduction of an intermediate layer.
Abstract: The paper describes different low temperature bonding for fiber-optic sensors. The physical explanation of the different bonding methods is also given. Sol-gel based bonding proposed in this paper can eliminate the problem of thermal mismatch due to introduction of an intermediate layer.
Book ChapterDOI
18 Apr 2021
TL;DR: In this paper, the spectral analysis of photonic bandgap structure (PBGS) is carried out using the FDTD method for solving the Maxwell's equations, and the spectral properties of the PBGSs with predetermined materials widths are used to design narrowband optical filter at 1550 nm.
Abstract: For investigating phenomena such as wave guiding, radiation and scattering, Maxwell’s equations are required to be solved numerically. The finite difference in time-domain (FDTD) method for solving Maxwell’s equations was first proposed by Kane S. Yee. As the computational capabilities of computers are increased with time, FDTD method becomes more and more pertinent for studying a variety of electromagnetic problems. Here, in this chapter, the FDTD method is discussed briefly and then spectral analysis of photonic bandgap structure (PBGS) is carried out using of FDTD method. PBGS plays an important role in the modern optical communication system for manipulating light energy. In the last section of the chapter, it is shown how the PBGSs with predetermined materials widths are used to design narrowband optical filter at 1550 nm.
Journal ArticleDOI
TL;DR: In this paper, an engineered silicon rib waveguide on a silicon-on-insulator (SOSI) platform is proposed to construct a virtual photonic bandgap structure.
Abstract: An engineered silicon rib waveguide on Silicon-On-Insulator platform which can act as virtual photonic bandgap structure is proposed. Selective periodic etching of materials from a rib waveguide is...

Cited by
More filters
Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: In this article, a new optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented.
Abstract: New optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented. Guiding and routing of electromagnetic radiation along nanometer-thin and micrometer-wide gold stripes embedded in polymer via excitation of LR-SPPs is investigated in the wavelength range of 1250-1650 nm. LR-SPP guiding properties, such as the propagation loss and mode-field diameter, are investigated for different stripe widths and thicknesses. A propagation loss of /spl sim/6 dB/cm, a coupling loss of /spl sim/0.5 dB (per facet), and a bend loss of /spl sim/5 dB for a bend radius of 15 mm are evaluated for 15-nm-thick and 8-/spl mu/m-wide stripes at the wavelength of 1550 nm. LR-SPP-based 3-dB power Y-splitters, multimode interference waveguides, and directional couplers are demonstrated and investigated. At 1570 nm, coupling lengths of 1.9 and 0.8 mm are found for directional couplers with, respectively, 4- and 0-/spl mu/m-separated waveguides formed by 15-nm-thick and 8-/spl mu/m-wide gold stripes. LR-SPP-based waveguides and waveguide components are modeled using the effective-refractive-index method, and good agreement with experimental results is obtained.

417 citations

Journal ArticleDOI
TL;DR: A comprehensive inventory of the progresses achieved so far is gathered, to allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs.
Abstract: High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.

171 citations

Journal ArticleDOI
TL;DR: In this article, three types of fiber Bragg grating-based vibration sensors have been classified based on the difference of vibration-strain coupling way to FBG in this survey, which are pasted FBG-based, axial property of FBGbased and transverse property, respectively.
Abstract: Vibration sensing is critical to monitor and ultimately preserve the health state of engineering systems. These systems with a large structure are typically working in some harsh environments including strong magnetic fields. However, traditional electrical sensors are difficult to accurately measure the vibration under harsh environments. Besides these instinct advantages of normal fiber optic sensors (FOS) sensors such as compact size, passive sensing, resistance to electromagnetic interference, etc., fiber Bragg grating (FBG) sensors have a capability of distributed sensing based on wavelength demodulation and resistance to light intensity fluctuation and unwanted fiber bending losses. Such merits lead them to be a hot topic in FOS field and excellent candidates for vibration sensing. Three types of FBG-based vibration sensors have been classified based on the difference of vibration-strain coupling way to FBG in this survey, which are pasted FBG-based, axial property of FBG-based and transverse property of FBG-based, respectively. FBG-based vibration sensors' principles and designs have been introduced and discussed. Recent advances in the applications of FBG-based vibration sensors have been investigated. The limitations and prospects of the FBG-based vibration sensing technologies have been analyzed and discussed.

91 citations

Journal ArticleDOI
TL;DR: A significant reduction in patient healing time with less loss of mechanical strength of implants has been achieved after coating with hydroxyapatite (HA), and a comparative study of these techniques is presented.
Abstract: To facilitate patient healing in injuries and bone fractures, metallic implants have been in use for a long time. As metallic biomaterials have offered desirable mechanical strength higher than the stiffness of human bone, they have maintained their place. However, in many case studies, it has been observed that these metallic biomaterials undergo a series of corrosion reactions in human body fluid. The products of these reactions are released metallic ions, which are toxic in high dosages. On the other hand, as these metallic implants have different material structures and compositions than that of human bone, the process of healing takes a longer time and bone/implant interface forms slower. To resolve this issue, researchers have proposed depositing coatings, such as hydroxyapatite (HA), polycaprolactone (PCL), metallic oxides (e.g., TiO2, Al2O3), etc., on implant substrates in order to enhance bone/implant interaction while covering the substrate from corrosion. Due to many useful HA characteristics, the outcome of various studies has proved that after coating with HA, the implants enjoy enhanced corrosion resistance and less metallic ion release while the bone ingrowth has been increased. As a result, a significant reduction in patient healing time with less loss of mechanical strength of implants has been achieved. Some of the most reliable coating processes for biomaterials, to date, capable of depositing HA on implant substrate are known as sol-gel, high-velocity oxy-fuel-based deposition, plasma spraying, and electrochemical coatings. In this article, all these coating methods are categorized and investigated, and a comparative study of these techniques is presented.

82 citations