scispace - formally typeset
Search or ask a question
Author

Rakesh K. Jain

Bio: Rakesh K. Jain is an academic researcher from Harvard University. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor. The author has an hindex of 200, co-authored 1467 publications receiving 177727 citations. Previous affiliations of Rakesh K. Jain include Government Medical College, Thiruvananthapuram & University of Oslo.


Papers
More filters
01 May 2017
TL;DR: In this article, three-photon wide-field depth-resolved excitation was used to overcome some of the limitations in conventional point-scanning 2-and 3-Photon microscopy, achieving a penetration depth of more than 700 μm into fixed scattering brain tissue.
Abstract: Three-photon wide-field depth-resolved excitation is used to overcome some of the limitations in conventional point-scanning two- and three-photon microscopy. Excitation of chromophores as diverse as channelrhodopsins and quantum dots is shown, and a penetration depth of more than 700 μm into fixed scattering brain tissue is achieved, approximately twice as deep as that achieved using two-photon wide-field excitation. Compatibility with live animal experiments is confirmed by imaging the cerebral vasculature of an anesthetized mouse; a complete focal stack was obtained without any evidence of photodamage. As an additional validation of the utility of wide-field three-photon excitation, functional excitation is demonstrated by performing three-photon optogenetic stimulation of cultured mouse hippocampal neurons expressing a channelrhodopsin; action potentials could reliably be excited without causing photodamage.

45 citations

Journal ArticleDOI
TL;DR: The effect of photodynamic therapy on interstitial fluid pressure (IFP), tumour volume and water content was measured in melanomas grown in hamsters, and treated tumours exhibited a higher increase in volume than control tumours.
Abstract: The effect of photodynamic therapy (PDT) on interstitial fluid pressure (IFP), tumour volume and water content was measured in melanomas grown in hamsters. Unlike control tumours, treated tumours exhibited a 40-60% increase in volume at 1, 3 and 6 h post PDT. IFP also increased at 1 and 3 h after PDT, but decreased to 50% of control value after 24 h, presumably as a result of PDT-induced microcirculatory impairment.

45 citations

01 Jan 2002
TL;DR: It is hypothesized that blocking the growth of new blood vessels and lymphatic vessels will inhibit hematogenic and lymphogenic metastases, respectively, and an impressive array of preclinical studies has demonstrated prevention and suppression of hematogenetic metastases by antiangiogenic and antivascular approaches.
Abstract: Cancer cells escape a tumor by two primary routes—blood vessels and lymphatic vessels—to establish distant metastases. Thus, it seems reasonable to hypothesize that blocking the growth of new blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis) will inhibit hematogenic and lymphogenic metastases, respectively. An impressive array of preclinical studies has demonstrated prevention and suppression of hematogenic metastases by antiangiogenic and antivascular approaches. Whether antilymphangiogenic and antilymphatic approaches will yield similar results for lymphogenic metastases remains to be seen. Both vascular endothelial growth factor

45 citations

Proceedings ArticleDOI
TL;DR: Dual anti-angiogenic therapy has the potential to overcome resistance to anti-VEGF therapy and confer clinical benefits in GBM patients through vascular and immuno-modulatory effects.
Abstract: OBJECTIVE: We aimed to enhance the efficacy of anti-VEGF therapy in glioblastoma (GBM) through additional inhibition of Angiopoietin-2 (Ang-2), a potential mediator of resistance to antiangiogenic therapy using VEGF inhibition. INTRODUCTION: Glioblastoma (GBM) is a uniformly lethal primary brain tumor affecting more than 12.000 patients every year in the US alone. The standard therapy regimen for this highly angiogenic tumor entity comprises maximal safe resection and chemoradiation with temozolomide. The addition of antiangiogenic (anti-VEGF) therapy to the standard of care regimen improved progression-free survival, but failed to improve overall survival of GBM patients. Preclinical and clinical data suggest that resistance to anti-VEGF therapy in GBM is mediated by Ang-2, making this pathway a potential target. EXPERIMENTAL DESIGN: We tested the effect of dual Ang-2/VEGF blockade with A2V on mouse survival using a syngeneic (Gl261) model and a human xenograft (MGG8) model, compared to anti-VEGF antibody therapy (B20). In addition, we used blood-based Gaussian Luciferase (GLUC) assays, immunohistochemistry and flow cytometry to measure changes in tumor growth, microvessel density (MVD), and immune microenvironment, respectively. RESULTS: Gl261 tumors have a highly abnormal tumor vasculature. In this model, treatment with A2V reduced MVD compared to B20. The decrease in MVD was due to a reduction in pericyte-low tumor vessels, while pericyte-high vessels were unaffected. These vascular changes were accompanied by reduced tumor burden and enhanced survival. Interestingly, in the MGG8 tumors, which have a vasculature similar to the normal brain, we detected no change in MVD after A2V treatment. Nevertheless, we found a reduced tumor burden and prolonged animal survival in the MGG8 model. Since vascular normalization may impact immune cell infiltration and function in tumors, we next evaluated these cell populations. We found that A2V therapy reduced pro-tumor M2 polarization of macrophages and microglia and reprogrammed these cells toward the M1 phenotype in both the Gl261 and MGG8 models. Collectively, our data indicate that therapy-induced anti-tumor immunity is mediated by M1-type macrophages but not by T-cell infiltration or function. CONCLUSION: Dual Ang-2/VEGF therapy with A2V reprogrammed macrophages and microglia from pro-tumor M2 toward the anti-tumor M1 phenotype in two GBM models, in addition to normalizing vasculature in tumors with abnormal vessels. These data indicate that dual anti-angiogenic therapy has the potential to overcome resistance to anti-VEGF therapy and confer clinical benefits in GBM patients through vascular and immuno-modulatory effects. Citation Format: Jonas Kloepper, Lars Riedemann, Zohreh Amoozgar, Giorgio Seano, Katharina H. Susek, Veronica Yu, Nisha Dalvie, Robin L. Amelung, Meenal Datta, Jonathan W. Song, Vasileios Askoxylakis, Jennie W. Taylor, Christine Lu-Emerson, Ana Batista, Nathaniel D. Kirkpatrick, Keehoon Jung, Matija Snuderl, Alona Muzikansky, Kay G. Stubenrauch, Oliver Krieter, Hiroaki Wakimoto, Lei Xu, Lance L. Munn, Dan G. Duda, Dai Fukumura, Tracy T. Batchelor, Rakesh K. Jain. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-347.

45 citations

Journal ArticleDOI
TL;DR: The results support exploring whether lower doses of bevacizumab improve perfusion and concomitant drug delivery in patients with recurrent GBM, and suggest that perfusion may modulate the delivery of chemotherapy in certain settings.
Abstract: Purpose: Targeting tumor blood vessels is an attractive therapy in glioblastoma (GBM), but the mechanism of action of these agents and how they modulate delivery of concomitant chemotherapy are not clear in humans. We sought to elucidate how bevacizumab modulates tumor vasculature and the impact those vascular changes have on drug delivery in patients with recurrent GBM. Experimental Design: Temozolomide was labeled with [11C], and serial PET-MRI scans were performed in patients with recurrent GBM treated with bevacizumab and daily temozolomide. PET-MRI scans were performed prior to the first bevacizumab dose, 1 day after the first dose, and prior to the third dose of bevacizumab. We calculated tumor volume, vascular permeability (Ktrans), perfusion (cerebral blood flow), and the standardized uptake values (SUV) of [11C] temozolomide within the tumor. Results: Twelve patients were enrolled, resulting in 23 evaluable scans. Within the entire contrast-enhancing tumor volume, both temozolomide uptake and vascular permeability decreased after initiation of bevacizumab in most patients, whereas change in perfusion was more variable. In subregions of the tumor where permeability was low and the blood–brain barrier not compromised, increased perfusion correlated with increased temozolomide uptake. Conclusions: Bevacizumab led to a decrease in permeability and concomitant delivery of temozolomide. However, in subregions of the tumor where permeability was low, increased perfusion improved delivery of temozolomide, suggesting that perfusion may modulate the delivery of chemotherapy in certain settings. These results support exploring whether lower doses of bevacizumab improve perfusion and concomitant drug delivery.

45 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
TL;DR: The addition of bevacizumab to fluorouracil-based combination chemotherapy results in statistically significant and clinically meaningful improvement in survival among patients with metastatic colorectal cancer.
Abstract: background Bevacizumab, a monoclonal antibody against vascular endothelial growth factor, has shown promising preclinical and clinical activity against metastatic colorectal cancer, particularly in combination with chemotherapy. methods Of 813 patients with previously untreated metastatic colorectal cancer, we randomly assigned 402 to receive irinotecan, bolus fluorouracil, and leucovorin (IFL) plus bevacizumab (5 mg per kilogram of body weight every two weeks) and 411 to receive IFL plus placebo. The primary end point was overall survival. Secondary end points were progression-free survival, the response rate, the duration of the response, safety, and the quality of life. results The median duration of survival was 20.3 months in the group given IFL plus bevacizumab, as compared with 15.6 months in the group given IFL plus placebo, corresponding to a hazard ratio for death of 0.66 (P<0.001). The median duration of progressionfree survival was 10.6 months in the group given IFL plus bevacizumab, as compared with 6.2 months in the group given IFL plus placebo (hazard ratio for disease progression, 0.54; P<0.001); the corresponding rates of response were 44.8 percent and 34.8 percent (P=0.004). The median duration of the response was 10.4 months in the group given IFL plus bevacizumab, as compared with 7.1 months in the group given IFL plus placebo (hazard ratio for progression, 0.62; P=0.001). Grade 3 hypertension was more common during treatment with IFL plus bevacizumab than with IFL plus placebo (11.0 percent vs. 2.3 percent) but was easily managed. conclusions The addition of bevacizumab to fluorouracil-based combination chemotherapy results in statistically significant and clinically meaningful improvement in survival among patients with metastatic colorectal cancer.

10,161 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations