scispace - formally typeset
Search or ask a question
Author

Rakesh K. Jain

Bio: Rakesh K. Jain is an academic researcher from Harvard University. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor. The author has an hindex of 200, co-authored 1467 publications receiving 177727 citations. Previous affiliations of Rakesh K. Jain include Government Medical College, Thiruvananthapuram & University of Oslo.


Papers
More filters
Journal ArticleDOI
TL;DR: Sunitinib shows evidence of modest antitumor activity in advanced HCC with manageable adverse effects and Rapid changes in tumor vascular permeability and circulating inflammatory biomarkers are potential determinants of response and resistance to sunitinIB in HCC.
Abstract: Purpose To assess the safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma (HCC) and explore biomarkers for sunitinib response. Patients and Methods We conducted a multidisciplinary phase II study of sunitinib, an antivascular endothelial growth factor receptor tyrosine kinase inhibitor, in advanced HCC. Patients received sunitinib 37.5 mg/d for 4 weeks followed by 2 weeks of rest per cycle. The primary end point was progression-free survival (PFS). We used functional magnetic resonance imaging to evaluate vascular changes in HCC after sunitinib treatment. Circulating molecular and cellular biomarkers were evaluated before and at six time points after sunitinib treatment. Results Thirty-four patients were enrolled. The objective response rate was 2.9%, and 50% of patients had stable disease. Median PFS was 3.9 months (95% CI, 2.6 to 6.9 months), and overall survival was 9.8 months (95% CI, 7.4 months to not available). Grade 3 or 4 toxicities included leukopenia/neutropenia,...

463 citations

Journal ArticleDOI
TL;DR: Anti-VEGF therapy with sorafenib was the first systemic therapy to demonstrate improved survival in patients with advanced-stage HCC, which raises hope as well as critical questions on the future development of targeted agents including other antiangiogenic agents, which hold promise to further increase survival in this aggressive disease.
Abstract: Hepatocellular carcinoma (HCC), the most common primary liver tumor, is notoriously resistant to systemic therapies, and often recurs even after aggressive local therapies. HCCs rely on the formation of new blood vessels for growth, and VEGF is critical in this process. A hallmark of new vessel formation in tumors is their structural and functional abnormality. This leads to an abnormal tumor microenvironment characterized by low oxygen tension. The liver is perfused by both arterial and venous blood and the resulting abnormal microenvironment selects for more-aggressive malignancies. Anti-VEGF therapy with sorafenib was the first systemic therapy to demonstrate improved survival in patients with advanced-stage HCC. This important development in the treatment of HCC raises hope as well as critical questions on the future development of targeted agents including other antiangiogenic agents, which hold promise to further increase survival in this aggressive disease.

461 citations

Journal ArticleDOI
TL;DR: Fluorescent semiconductor nanocrystals can be customized to concurrently image and differentiate tumor vessels from both the perivascular cells and the matrix and monitored the recruitment of quantum dot–labeled bone marrow–derived precursor cells to the tumor vasculature.
Abstract: A solid tumor is an organ composed of cancer and host cells embedded in an extracellular matrix and nourished by blood vessels. A prerequisite to understanding tumor pathophysiology is the ability to distinguish and monitor each component in dynamic studies. Standard fluorophores hamper simultaneous intravital imaging of these components. Here, we used multiphoton microscopy techniques and transgenic mice that expressed green fluorescent protein, and combined them with the use of quantum dot preparations. We show that these fluorescent semiconductor nanocrystals can be customized to concurrently image and differentiate tumor vessels from both the perivascular cells and the matrix. Moreover, we used them to measure the ability of particles of different sizes to access the tumor. Finally, we successfully monitored the recruitment of quantum dot–labeled bone marrow–derived precursor cells to the tumor vasculature. These examples show the versatility of quantum dots for studying tumor pathophysiology and creating avenues for treatment.

452 citations

Journal ArticleDOI
TL;DR: What is known about the biology of brain metastases, what preclinical models are available to study the disease, and which novel therapeutic strategies are being studied in patients are discussed.
Abstract: Brain metastases are a serious obstacle in the treatment of patients with solid tumors and contribute to the morbidity and mortality of these cancers. It is speculated that the frequency of brain metastasis is increasing for several reasons, including improved systemic therapy and survival, and detection of metastases in asymptomatic patients. The lack of preclinical models that recapitulate the clinical setting and the exclusion of patients with brain metastases from most clinical trials have slowed progress. Molecular factors contributing to brain metastases are being elucidated, such as genes involved in cell adhesion, extravasation, metabolism, and cellular signaling. Furthermore, the role of the unique brain microenvironment is beginning to be explored. Although the presence and function of the blood-brain barrier in metastatic tumors is still poorly understood, it is likely that some tumor cells are protected from therapeutics by the blood-tumor barrier, creating a sanctuary site. This Review discusses what is known about the biology of brain metastases, what preclinical models are available to study the disease, and which novel therapeutic strategies are being studied in patients.

443 citations

Journal ArticleDOI
TL;DR: A class of high-quality SWIR-emissive indium-arsenide-based quantum dots (QDs) that are readily modifiable for various functional imaging applications, and that exhibit narrow and size-tunable emission and a dramatically higher emission quantum yield than previously described SWIR probes are introduced.
Abstract: Functionalized InAs quantum dots emitting in the short-wavelength infrared spectral region enable functional biomedical imaging at unprecedentedly high spatial resolution, deep penetration and fast acquisition speeds.

435 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
TL;DR: The addition of bevacizumab to fluorouracil-based combination chemotherapy results in statistically significant and clinically meaningful improvement in survival among patients with metastatic colorectal cancer.
Abstract: background Bevacizumab, a monoclonal antibody against vascular endothelial growth factor, has shown promising preclinical and clinical activity against metastatic colorectal cancer, particularly in combination with chemotherapy. methods Of 813 patients with previously untreated metastatic colorectal cancer, we randomly assigned 402 to receive irinotecan, bolus fluorouracil, and leucovorin (IFL) plus bevacizumab (5 mg per kilogram of body weight every two weeks) and 411 to receive IFL plus placebo. The primary end point was overall survival. Secondary end points were progression-free survival, the response rate, the duration of the response, safety, and the quality of life. results The median duration of survival was 20.3 months in the group given IFL plus bevacizumab, as compared with 15.6 months in the group given IFL plus placebo, corresponding to a hazard ratio for death of 0.66 (P<0.001). The median duration of progressionfree survival was 10.6 months in the group given IFL plus bevacizumab, as compared with 6.2 months in the group given IFL plus placebo (hazard ratio for disease progression, 0.54; P<0.001); the corresponding rates of response were 44.8 percent and 34.8 percent (P=0.004). The median duration of the response was 10.4 months in the group given IFL plus bevacizumab, as compared with 7.1 months in the group given IFL plus placebo (hazard ratio for progression, 0.62; P=0.001). Grade 3 hypertension was more common during treatment with IFL plus bevacizumab than with IFL plus placebo (11.0 percent vs. 2.3 percent) but was easily managed. conclusions The addition of bevacizumab to fluorouracil-based combination chemotherapy results in statistically significant and clinically meaningful improvement in survival among patients with metastatic colorectal cancer.

10,161 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations