scispace - formally typeset
Search or ask a question
Author

Rakesh K. Jain

Bio: Rakesh K. Jain is an academic researcher from Harvard University. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor. The author has an hindex of 200, co-authored 1467 publications receiving 177727 citations. Previous affiliations of Rakesh K. Jain include Government Medical College, Thiruvananthapuram & University of Oslo.


Papers
More filters
Journal ArticleDOI
TL;DR: Microcirculation (2010) 17, 206–225; doi: 10.1111/j.1549‐8719.2010.00029.x
Abstract: Intravital imaging techniques have provided unprecedented insight into tumor microcirculation and microenvironment. For example, these techniques allowed quantitative evaluations of tumor blood vasculature to uncover its abnormal organization, structure and function (e.g., hyper-permeability, heterogeneous and compromised blood flow). Similarly, imaging of functional lymphatics has documented their absence inside tumors. These abnormalities result in elevated interstitial fluid pressure and hinder the delivery of therapeutic agents to tumors. In addition, they induce a hostile microenvironment characterized by hypoxia and acidosis, as documented by intravital imaging. The abnormal microenvironment further lowers the effectiveness of anti-tumor treatments such as radiation therapy and chemotherapy. In addition to these mechanistic insights, intravital imaging may also offer new opportunities to improve therapy. For example, tumor angiogenesis results in immature, dysfunctional vessels--primarily caused by an imbalance in production of pro- and anti-angiogenic factors by the tumors. Restoring the balance of pro- and anti-angiogenic signaling in tumors can "normalize" tumor vasculature and thus, improve its function, as demonstrated by intravital imaging studies in preclinical models and in cancer patients. Administration of cytotoxic therapy during periods of vascular normalization has the potential to enhance treatment efficacy.

400 citations

Journal ArticleDOI
Patrycja Nowak-Sliwinska1, Kari Alitalo2, Elizabeth Allen3, Andrey Anisimov2, Alfred C. Aplin4, Robert Auerbach5, Hellmut G. Augustin6, Hellmut G. Augustin7, David O. Bates8, Judy R. van Beijnum9, R. Hugh F. Bender10, Gabriele Bergers11, Gabriele Bergers3, Andreas Bikfalvi12, Joyce Bischoff13, Barbara C. Böck6, Barbara C. Böck7, Peter C. Brooks14, Federico Bussolino15, Bertan Cakir13, Peter Carmeliet3, Daniel Castranova16, Anca Maria Cimpean, Ondine Cleaver17, George Coukos18, George E. Davis19, Michele De Palma20, Anna Dimberg21, Ruud P.M. Dings22, Valentin Djonov23, Andrew C. Dudley24, Neil Dufton25, Sarah-Maria Fendt3, Napoleone Ferrara26, Marcus Fruttiger27, Dai Fukumura13, Bart Ghesquière28, Bart Ghesquière3, Yan Gong13, Robert J. Griffin22, Adrian L. Harris29, Christopher C.W. Hughes10, Nan W. Hultgren10, M. Luisa Iruela-Arispe30, Melita Irving18, Rakesh K. Jain13, Raghu Kalluri31, Joanna Kalucka3, Robert S. Kerbel32, Jan Kitajewski33, Ingeborg Klaassen34, Hynda K. Kleinmann35, Pieter Koolwijk18, Elisabeth Kuczynski32, Brenda R. Kwak1, Koen Marien, Juan M. Melero-Martin13, Lance L. Munn13, Roberto F. Nicosia4, Agnès Noël36, Jussi Nurro37, Anna-Karin Olsson21, Tatiana V. Petrova38, Kristian Pietras, Roberto Pili39, Jeffrey W. Pollard40, Mark J. Post41, Paul H.A. Quax42, Gabriel A. Rabinovich43, Marius Raica, Anna M. Randi25, Domenico Ribatti44, Curzio Rüegg45, Reinier O. Schlingemann34, Reinier O. Schlingemann18, Stefan Schulte-Merker, Lois E.H. Smith13, Jonathan W. Song46, Steven A. Stacker47, Jimmy Stalin, Amber N. Stratman16, Maureen Van de Velde36, Victor W.M. van Hinsbergh18, Peter B. Vermeulen48, Johannes Waltenberger49, Brant M. Weinstein16, Hong Xin26, Bahar Yetkin-Arik34, Seppo Ylä-Herttuala37, Mervin C. Yoder39, Arjan W. Griffioen9 
University of Geneva1, University of Helsinki2, Katholieke Universiteit Leuven3, University of Washington4, University of Wisconsin-Madison5, Heidelberg University6, German Cancer Research Center7, University of Nottingham8, VU University Amsterdam9, University of California, Irvine10, University of California, San Francisco11, French Institute of Health and Medical Research12, Harvard University13, Maine Medical Center14, University of Turin15, National Institutes of Health16, University of Texas Southwestern Medical Center17, University of Lausanne18, University of Missouri19, École Polytechnique Fédérale de Lausanne20, Uppsala University21, University of Arkansas for Medical Sciences22, University of Bern23, University of Virginia24, Imperial College London25, University of California, San Diego26, University College London27, Flanders Institute for Biotechnology28, University of Oxford29, University of California, Los Angeles30, University of Texas MD Anderson Cancer Center31, University of Toronto32, University of Illinois at Chicago33, University of Amsterdam34, George Washington University35, University of Liège36, University of Eastern Finland37, Ludwig Institute for Cancer Research38, Indiana University39, University of Edinburgh40, Maastricht University41, Loyola University Medical Center42, National Scientific and Technical Research Council43, University of Bari44, University of Fribourg45, Ohio State University46, University of Melbourne47, University of Antwerp48, University of Münster49
TL;DR: In vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis are described and critical aspects that are relevant for their execution and proper interpretation are highlighted.
Abstract: The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.

397 citations

Journal Article
TL;DR: This is the first model enabling intravital microscopic studies of human tumor xenografts in a transparent chamber preparation in severe combined immunodeficient mice, and should provide new insights into microcirculation-mediated mechanisms for cancer treatment.
Abstract: To date, most quantitative information on tumor angiogenesis, microcirculation, and transport has been derived from rodent tumors grown in transparent chamber preparations. In this paper we present a chamber technique adapted to immunodeficient mice for the study of human tumor xenografts. Microcirculatory parameters in severe combined immunodeficient mice bearing a dorsal skin fold chamber preparation were quantified using intravital microscopy and image analysis. The take rate of the human colon adenocarcinoma LS174T in the chamber preparation was 100%, and the tumor area doubling time was 6.5 days. Three days following implantation of 2 x 10(5) tumor cells onto the striated skin muscle, capillary sprouts were noted in the tumor cell mass. Microvasculature in the tumors was established after 10 days. Capillary density, vessel diameter, red blood cell velocity, and blood flow rates in individual microvessels measured on days 10, 14, 18, and 22 showed no statistical difference in the striated muscle (capillaries) and subcutaneous tissue (arterioles and venules) of the skin of tumor-free animals (N = 6), whereas these parameters increased slightly, but not significantly, in the LS174T tumors (N = 7). Mean interstitial fluid pressure (+/- SD) in these small tumors was 4.6 +/- 1.7 mmHg (N = 4) on day 10 and 5.1 +/- 0.9 mmHg (N = 4) on day 22 and significantly elevated compared to that in the subcutaneous and skin tissue (-0.9 +/- 0.8 mmHg) (N = 4) (P < 0.001). To our knowledge, this is the first model enabling intravital microscopic studies of human tumor xenografts in a transparent chamber preparation in severe combined immunodeficient mice. Studies on angiogenesis, microcirculation, and transport using such a preparation should provide new insights into microcirculation-mediated mechanisms for cancer treatment.

397 citations

Journal ArticleDOI
TL;DR: Recent preclinical and clinical data that support the potential use of anti-CXCL12 agents (e.g., AMD3100, NOX-A12, or CCX2066) as sensitizers to currently available therapies by targeting the CXCL 12/CXCR4 and CXCR7 pathways are discussed.
Abstract: Addition of multiple molecularly targeted agents to the existing armamentarium of chemotherapeutics and radiotherapies represents a significant advance in the management of several advanced cancers. In certain tumor types with no efficacious therapy options, these agents have become the first line of therapy, for example, sorafenib in advanced hepatocellular carcinoma or bevacizumab in recurrent glioblastoma. Unfortunately, in many cases, the survival benefits are modest, lasting only weeks to a few months. Moreover, they may not show benefit in patients with localized disease (i.e., in the adjuvant setting). Recent studies have provided increasing evidence that activation of the chemokine CXCL12 (SDF1α) pathway is a potential mechanism of tumor resistance to both conventional therapies and biological agents via multiple complementary actions: (i) by directly promoting cancer cell survival, invasion, and the cancer stem and/or tumor-initiating cell phenotype; (ii) by recruiting "distal stroma" (i.e., myeloid bone marrow-derived cells) to indirectly facilitate tumor recurrence and metastasis; and (iii) by promoting angiogenesis directly or in a paracrine manner. Here, we discuss recent preclinical and clinical data that support the potential use of anti-CXCL12 agents (e.g., AMD3100, NOX-A12, or CCX2066) as sensitizers to currently available therapies by targeting the CXCL12/CXCR4 and CXCL12/CXCR7 pathways.

393 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
TL;DR: The addition of bevacizumab to fluorouracil-based combination chemotherapy results in statistically significant and clinically meaningful improvement in survival among patients with metastatic colorectal cancer.
Abstract: background Bevacizumab, a monoclonal antibody against vascular endothelial growth factor, has shown promising preclinical and clinical activity against metastatic colorectal cancer, particularly in combination with chemotherapy. methods Of 813 patients with previously untreated metastatic colorectal cancer, we randomly assigned 402 to receive irinotecan, bolus fluorouracil, and leucovorin (IFL) plus bevacizumab (5 mg per kilogram of body weight every two weeks) and 411 to receive IFL plus placebo. The primary end point was overall survival. Secondary end points were progression-free survival, the response rate, the duration of the response, safety, and the quality of life. results The median duration of survival was 20.3 months in the group given IFL plus bevacizumab, as compared with 15.6 months in the group given IFL plus placebo, corresponding to a hazard ratio for death of 0.66 (P<0.001). The median duration of progressionfree survival was 10.6 months in the group given IFL plus bevacizumab, as compared with 6.2 months in the group given IFL plus placebo (hazard ratio for disease progression, 0.54; P<0.001); the corresponding rates of response were 44.8 percent and 34.8 percent (P=0.004). The median duration of the response was 10.4 months in the group given IFL plus bevacizumab, as compared with 7.1 months in the group given IFL plus placebo (hazard ratio for progression, 0.62; P=0.001). Grade 3 hypertension was more common during treatment with IFL plus bevacizumab than with IFL plus placebo (11.0 percent vs. 2.3 percent) but was easily managed. conclusions The addition of bevacizumab to fluorouracil-based combination chemotherapy results in statistically significant and clinically meaningful improvement in survival among patients with metastatic colorectal cancer.

10,161 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations