scispace - formally typeset
Search or ask a question
Author

Rakesh K. Jain

Bio: Rakesh K. Jain is an academic researcher from Harvard University. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor. The author has an hindex of 200, co-authored 1467 publications receiving 177727 citations. Previous affiliations of Rakesh K. Jain include Government Medical College, Thiruvananthapuram & University of Oslo.


Papers
More filters
Journal ArticleDOI
TL;DR: Different PDF inhibitors are compared and their biological activities are discussed, and structure-activity relationships have been established and the implications of this work in the design of future PDF inhibitor are considered.
Abstract: Peptide deformylase (PDF) is a prokaryotic metalloenzyme that is essential for bacterial growth but is not required by mammalian cells. Thus, it represents a selective and promising target for the development of new antibacterial agents. Since deformylase inhibitors have yet to be used clinically as antibacterial drugs, compounds targeting this enzyme should avoid cross-resistance with currently used antibacterial agents. The PDF enzyme is a ferrous ion-containing metallohydrolase, but a nickel-containing surrogate is routinely used in the laboratory for testing inhibitors due to its better stability. Enzymes from several bacterial species have been cloned and both their three-dimensional structures and co-crystal structures with bound inhibitor have been determined. As a metallo enzyme, PDF lends itself to the well-precedented mechanism-based rational drug design approach. Using structural and mechanistic information together with high throughput screening, several types of potent PDF inhibitors have been identified. PDF inhibitors identified to date share a common structural feature of a "chelator + peptidomimetic" scaffold. Although compounds with many different chelators inhibit the cell free enzyme, only compounds containing hydroxamic acid or N-formyl hydroxylamine exhibit appreciable antibacterial activity. Several lead inhibitors have demonstrated in vivo efficacy and an excellent safety profile. Two PDF inhibitors, VIC-104959 (LBM415) and BB-83698, have progressed to Phase I clinical trials. In this review, different PDF inhibitors are compared and their biological activities are discussed. Structure-activity relationships have been established and the implications of this work in the design of future PDF inhibitors are considered.

118 citations

Journal ArticleDOI
TL;DR: Researchers found that if they could normalize the blood vessels, the cancer medications would get into the tumors and work more effectively.
Abstract: This article updates readers on promising developments in the treatment of cancer. Abnormal and malfunctioning blood vessels are a standard of solid tumors and they contribute to the malignancy of a cancer and prevent treatments from attacking the rogue tumor cells. Researchers found that if they could normalize the blood vessels, the cancer medications would get into the tumors and work more effectively. INSETS: ABNORMAL VESSELS MAKE TROUBLE;Vessel Repair: Beyond Cancer.

118 citations

Journal ArticleDOI
TL;DR: An immunosuppressive function of Ly6Clo monocytes is unveiled that has yet to be reported in any context, and molecular mechanisms underlying antiangiogenic treatment resistance are revealed, suggesting potential immunomodulatory strategies to enhance the long-term clinical outcome of anti-VEGF therapies.
Abstract: Current anti-VEGF therapies for colorectal cancer (CRC) provide limited survival benefit, as tumors rapidly develop resistance to these agents. Here, we have uncovered an immunosuppressive role for nonclassical Ly6Clo monocytes that mediates resistance to anti-VEGFR2 treatment. We found that the chemokine CX3CL1 was upregulated in both human and murine tumors following VEGF signaling blockade, resulting in recruitment of CX3CR1+Ly6Clo monocytes into the tumor. We also found that treatment with VEGFA reduced expression of CX3CL1 in endothelial cells in vitro. Intravital microscopy revealed that CX3CR1 is critical for Ly6Clo monocyte transmigration across the endothelium in murine CRC tumors. Moreover, Ly6Clo monocytes recruit Ly6G+ neutrophils via CXCL5 and produce IL-10, which inhibits adaptive immunity. Preventing Ly6Clo monocyte or Ly6G+ neutrophil infiltration into tumors enhanced inhibition of tumor growth with anti-VEGFR2 therapy. Furthermore, a gene therapy using a nanoparticle formulated with an siRNA against CX3CL1 reduced Ly6Clo monocyte recruitment and improved outcome of anti-VEGFR2 therapy in mouse CRCs. Our study unveils an immunosuppressive function of Ly6Clo monocytes that, to our knowledge, has yet to be reported in any context. We also reveal molecular mechanisms underlying antiangiogenic treatment resistance, suggesting potential immunomodulatory strategies to enhance the long-term clinical outcome of anti-VEGF therapies.

118 citations

Journal ArticleDOI
TL;DR: Most regions of tumor vessels that lack CD31 and CD105 immunoreactivity represent attenuated endothelial cells with abnormal expression of endothelial cell markers, but some are gaps between endothelialieri, and the integrity of the basement membrane in these regions is compromised.
Abstract: Endothelial cells of blood vessels in tumors may be thin, fragile, and defective in barrier function. We found previously that the endothelium of vessels in human colon carcinoma xenografts in mice is a mosaic structure. Approximately 85% of tumor vessels have uniform CD31 and/or CD105 immunoreactivity, but the remainder have focal regions that lack these common endothelial markers. The present study assessed the ultrastructure of the vessel lining and the integrity of the basement membrane in these regions. Using immunolabeling and confocal microscopy, we identified blood vessels that lacked CD31 and CD105 immunoreactivity and then analyzed the ultrastructure of these vessels by transmission electron microscopy. Eleven percent of vessels in orthotopic tumors and 24% of vessels in ectopic tumors had defects in CD31 and CD105 staining measuring on average 10.8 μm (range, 1-41.2 μm). Ultrastructural studies identified endothelial cells at 92% of CD31- and CD105-negative sites in orthotopic tumors and 70% of the sites in ectopic tumors. Thus, most regions of tumor vessels that lack CD31 and CD105 immunoreactivity represent attenuated endothelial cells with abnormal expression of endothelial cell markers, but some are gaps between endothelial cells. More than 80% of the defects lacked immunoreactivity for multiple basement membrane proteins.

117 citations

Journal ArticleDOI
TL;DR: Tumour necrosis factor-alpha reduced the interstitial fluid pressure (IFP) and the mean arterial blood pressure (MABP) after 5 h in three human melanoma tumour lines transplanted to nude mice.
Abstract: Tumour necrosis factor-alpha (TNF-alpha) reduced the interstitial fluid pressure (IFP) to 54-64% (P < 0.05) and the mean arterial blood pressure (MABP) to 70% (P < 0.01) of control values after 5 h in three human melanoma tumour lines transplanted to nude mice.

117 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, rheumatoid arthritis, and ageing.

12,240 citations

Journal ArticleDOI
TL;DR: The addition of bevacizumab to fluorouracil-based combination chemotherapy results in statistically significant and clinically meaningful improvement in survival among patients with metastatic colorectal cancer.
Abstract: background Bevacizumab, a monoclonal antibody against vascular endothelial growth factor, has shown promising preclinical and clinical activity against metastatic colorectal cancer, particularly in combination with chemotherapy. methods Of 813 patients with previously untreated metastatic colorectal cancer, we randomly assigned 402 to receive irinotecan, bolus fluorouracil, and leucovorin (IFL) plus bevacizumab (5 mg per kilogram of body weight every two weeks) and 411 to receive IFL plus placebo. The primary end point was overall survival. Secondary end points were progression-free survival, the response rate, the duration of the response, safety, and the quality of life. results The median duration of survival was 20.3 months in the group given IFL plus bevacizumab, as compared with 15.6 months in the group given IFL plus placebo, corresponding to a hazard ratio for death of 0.66 (P<0.001). The median duration of progressionfree survival was 10.6 months in the group given IFL plus bevacizumab, as compared with 6.2 months in the group given IFL plus placebo (hazard ratio for disease progression, 0.54; P<0.001); the corresponding rates of response were 44.8 percent and 34.8 percent (P=0.004). The median duration of the response was 10.4 months in the group given IFL plus bevacizumab, as compared with 7.1 months in the group given IFL plus placebo (hazard ratio for progression, 0.62; P=0.001). Grade 3 hypertension was more common during treatment with IFL plus bevacizumab than with IFL plus placebo (11.0 percent vs. 2.3 percent) but was easily managed. conclusions The addition of bevacizumab to fluorouracil-based combination chemotherapy results in statistically significant and clinically meaningful improvement in survival among patients with metastatic colorectal cancer.

10,161 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations