scispace - formally typeset
Search or ask a question
Author

Rakesh Singh

Bio: Rakesh Singh is an academic researcher from Indian Council of Agricultural Research. The author has contributed to research in topics: Population & Genetic diversity. The author has an hindex of 43, co-authored 355 publications receiving 7099 citations. Previous affiliations of Rakesh Singh include Indian Agricultural Research Institute & Central Soil Salinity Research Institute.
Topics: Population, Genetic diversity, Optics, Physics, RAPD


Papers
More filters
Book ChapterDOI
TL;DR: In this article, the authors assess the spatial and temporal vulnerabilities of different rice production systems to climate change impacts in Asia and conclude that geo-spatial vulnerability assessments may become crucial for planning targeted adaptation programs, but that policy frameworks are needed for their implementation.
Abstract: Rice is the principle staple crop of Asia and any deterioration of rice production systems through climate change would seriously impair food security in this continent. This review assesses spatial and temporal vulnerabilities of different rice production systems to climate change impacts in Asia. Initially, the review discusses the risks of increasing heat stress and maps the regions where current temperatures are already approaching critical levels during the susceptible stages of the rice plant, namely Pakistan/north India (Oct.), south India (April, Aug.), east India/Bangladesh (March-June), Myanmar/Thailand/Laos/Cambodia (March-June), Vietnam (April/Aug.), Philippines (April/June), Indonesia (Aug.) and China (July/Aug.). Possible adaptation options for heat stress are derived from regions where the rice crop is already exposed to very high temperatures including Iran and Australia. Drought stress is also expected to aggravate through climate change; a map superimposing the distribution of rainfed rice and precipitation anomalies in Asia highlights especially vulnerable areas in east India/Bangladesh and Myanmar/Thailand. Then, the review gives emphasis to two rice growing environments that have outstanding importance for food supply in Asia and, at the same time, are particularly vulnerable to climate impacts. The mega-deltas in Vietnam, Myanmar and Bangladesh are the backbone of the rice economy in the respective country and will experience specific climate change impacts due to sea level rise. Significant improvements of the rice production systems, that is, higher resilience to flooding and salinity, are crucial for maintaining or even increasing yield levels in these very productive deltaic regions. The other ‘hotspot’ with especially high climate change risks in Asia is the Indo-Gangetic Plains (IGP) which will be affected by the melting of the Himalayan glaciers. The dominant land use type in the IGP is rice-wheat rotation, and we discuss specific vulnerabilities and possible adaptation options in the different sub-regions of the IGP. We conclude that geo-spatial vulnerability assessments may become crucial for planning targeted adaptation programs, but that policy frameworks are needed for their implementation.

501 citations

Book ChapterDOI
TL;DR: In this article, a review of the adaptation strategies in rice production to climate change is presented, where the authors discuss the current state of knowledge on damage mechanism for rice plants as well as possible developments in germplasm and crop management technologies to overcome production losses.
Abstract: This review addresses possible adaptation strategies in rice production to abiotic stresses that will aggravate under climate change: heat (high temperature and humidity), drought, salinity, and submergence. Each stress is discussed regarding the current state of knowledge on damage mechanism for rice plants as well as possible developments in germplasm and crop management technologies to overcome production losses. Higher temperatures can adversely affect rice yields through two principal pathways, namely (i) high maximum temperatures that cause—in combination with high humidity—spikelet sterility and adversely affect grain quality and (ii) increased nighttime temperatures that may reduce assimilate accumulation. On the other hand, some rice cultivars are grown in extremely hot environments, so that the development of rice germplasm with improved heat resistance can capture an enormous genetic pool for this trait. Likewise, drought is a common phenomenon in many rice growing environments, and agriculture research has achieved considerable progress in terms of germplasm improvement and crop management (i.e., water saving techniques) to cope with the complexity of the drought syndrome. Rice is highly sensitive to salinity. Salinity often coincides with other stresses in rice production, namely drought in inland areas or submergence in coastal areas. Submergence tolerance of rice plants has substantially been improved by introgressing the Sub1 gene into popular rice cultivars in many Asian rice growing areas. Finally, the review comprises a comparative assessment of the rice versus other crops related to climate change. The rice crop has many unique features in terms of susceptibility and adaptation to climate change impacts due to its semiaquatic phylogenetic origin. The bulk of global rice supply originates from irrigated systems which are to some extent shielded from immediate drought effects. The buffer effect of irrigation against climate change impacts, however, will depend on nature and state of the respective irrigation system. The envisaged propagation of irrigation water saving techniques will entail benefits for the resilience of rice production systems to future droughts. We conclude that there are considerable risks for rice production stemming from climate change, but that the development of necessary adaptation options can capitalize on an enormous variety of rice production systems in very different climates and on encouraging progress in recent research.

443 citations

Journal ArticleDOI
16 Sep 2010-Rice
TL;DR: While the Saltol locus presents a complex scenario, it provides an opportunity for marker-assisted backcrossing to improve salt tolerance of popular varieties followed by targeting multiple loci through QTL pyramiding for areas with higher salt stress.
Abstract: This study characterized Pokkali-derived quantitative trait loci (QTLs) for seedling stage salinity tolerance in preparation for use in marker-assisted breeding. An analysis of 100 SSR markers on 140 IR29/Pokkali recombinant inbred lines (RILs) confirmed the location of the Saltol QTL on chromosome 1 and identified additional QTLs associated with tolerance. Analysis of a series of backcross lines and near-isogenic lines (NILs) developed to better characterize the effect of the Saltol locus revealed that Saltol mainly acted to control shoot Na+/K+ homeostasis. Multiple QTLs were required to acquire a high level of tolerance. Unexpectedly, multiple Pokkali alleles at Saltol were detected within the RIL population and between backcross lines, and representative lines were compared with seven Pokkali accessions to better characterize this allelic variation. Thus, while the Saltol locus presents a complex scenario, it provides an opportunity for marker-assisted backcrossing to improve salt tolerance of popular varieties followed by targeting multiple loci through QTL pyramiding for areas with higher salt stress.

420 citations

Journal ArticleDOI
06 May 2013-Rice
TL;DR: The MAGIC populations serve a dual purpose: permanent mapping populations for precise QTL mapping and for direct and indirect use in variety development and for studying the interactions of genome introgressions and chromosomal recombination.
Abstract: Background This article describes the development of Multi-parent Advanced Generation Inter-Cross populations (MAGIC) in rice and discusses potential applications for mapping quantitative trait loci (QTLs) and for rice varietal development. We have developed 4 multi-parent populations: indica MAGIC (8 indica parents); MAGIC plus (8 indica parents with two additional rounds of 8-way F1 inter-crossing); japonica MAGIC (8 japonica parents); and Global MAGIC (16 parents – 8 indica and 8 japonica). The parents used in creating these populations are improved varieties with desirable traits for biotic and abiotic stress tolerance, yield, and grain quality. The purpose is to fine map QTLs for multiple traits and to directly and indirectly use the highly recombined lines in breeding programs. These MAGIC populations provide a useful germplasm resource with diverse allelic combinations to be exploited by the rice community.

317 citations

Journal ArticleDOI
TL;DR: A set of 209 recombinant inbred lines developed from a cross between basmati quality variety Pusa 1121 and a contrasting quality breeding line Pusa 1342 were used to map the quantitative trait loci (QTLs) for seven important quality traits namely grain length, grain breadth, cooked kernel elongation ratio, amylose content, alkali spreading value, and aroma.
Abstract: Traditional basmati rice varieties are very low yielding due to their poor harvest index, tendency to lodging and increasing susceptibility to foliar diseases; hence there is a need to develop new varieties combining the grain quality attributes of basmati with high yield potential to fill the demand gap. Genetic control of basmati grain and cooking quality traits is quite complex, but breeding work can be greatly facilitated by use of molecular markers tightly linked to these traits. A set of 209 recombinant inbred lines (RILs) developed from a cross between basmati quality variety Pusa 1121 and a contrasting quality breeding line Pusa 1342, were used to map the quantitative trait loci (QTLs) for seven important quality traits namely grain length (GL), grain breadth (GB), grain length to breadth ratio (LBR), cooked kernel elongation ratio (ELR), amylose content (AC), alkali spreading value (ASV) and aroma. A framework molecular linkage map was constructed using 110 polymorphic simple sequence repeat (SSR) markers distributed over the 12 rice chromosomes. A number of QTLs, including three for GL, two for GB, two for LBR, three for aroma and one each for ELR, AC and ASV were mapped on seven different chromosomes. While location of majority of these QTLs was consistent with the previous reports, one QTL for GL on chromosomes 1, and one QTL each for ELR and aroma on chromosomes 11 and 3, respectively, are being reported here for the first time. Contrary to the earlier reports of monogenic recessive inheritance, the aroma in Pusa 1121 is controlled by at least three genes located on chromosomes 3, 4 and 8, and similar to the reported association of badh2 gene with aroma QTL on chromosome 8, we identified location of badh1 gene in the aroma QTL interval on chromosome 4. A discontinuous 5 + 3 bp deletion in the seventh exon of badh2 gene, though present in all the RILs with high aroma, was not sufficient to impart this trait to the rice grains as many of the RILs possessing this deletion showed only mild or no aroma expression.

214 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI

7,335 citations

Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal ArticleDOI
02 Apr 2010-Cell
TL;DR: There is persuasive clinical and experimental evidence that macrophages promote cancer initiation and malignant progression, and specialized subpopulations of macrophage may represent important new therapeutic targets.

4,109 citations