scispace - formally typeset
Search or ask a question
Author

Ralf Jaumann

Bio: Ralf Jaumann is an academic researcher from Free University of Berlin. The author has contributed to research in topics: Impact crater & Mars Exploration Program. The author has an hindex of 80, co-authored 762 publications receiving 22588 citations. Previous affiliations of Ralf Jaumann include University of Potsdam & German Aerospace Center.


Papers
More filters
Journal ArticleDOI
21 Apr 2006-Science
TL;DR: Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history.
Abstract: Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are found in the oldest terrains; sulfates were formed in a second era (the "theiikian" era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the "siderikian") is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.

1,480 citations

Journal ArticleDOI
TL;DR: The JUpiter ICy moons Explorer (JUICE) mission as mentioned in this paper was selected by ESA in May 2012 to perform detailed investigations of Jupiter and its system in all their interrelations and complexity with particular emphasis on Ganymede as a planetary body and potential habitat.

493 citations

Journal ArticleDOI
11 May 2012-Science
TL;DR: Dawn's results confirm predictions that Vesta differentiated and support its identification as the parent body of the HEDs, and present the mineralogical characterization of Vesta, revealing that this asteroid underwent a complex magmatic evolution that led to a differentiated crust and mantle.
Abstract: The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta's south pole, whose excavation was sufficient to produce Vesta-family asteroids (Vestoids) and HED meteorites. The spatially resolved mineralogy of the surface reflects the composition of the HED meteorites, confirming the formation of Vesta's crust by melting of a chondritic parent body. Vesta's mass, volume, and gravitational field are consistent with a core having an average radius of 107 to 113 kilometers, indicating sufficient internal melting to segregate iron. Dawn's results confirm predictions that Vesta differentiated and support its identification as the parent body of the HEDs.

470 citations

Journal ArticleDOI
Sei-ichiro Watanabe1, Sei-ichiro Watanabe2, Masatoshi Hirabayashi3, Naru Hirata4, Na. Hirata5, Rina Noguchi1, Yuri Shimaki1, H. Ikeda, Eri Tatsumi6, Makoto Yoshikawa7, Makoto Yoshikawa1, Shota Kikuchi1, Hikaru Yabuta8, Tomoki Nakamura9, Shogo Tachibana1, Shogo Tachibana6, Yoshiaki Ishihara1, Tomokatsu Morota2, Kohei Kitazato4, Naoya Sakatani1, Koji Matsumoto7, Koji Wada10, Hiroki Senshu10, C. Honda4, Tatsuhiro Michikami11, Hiroshi Takeuchi7, Hiroshi Takeuchi1, Toru Kouyama12, R. Honda13, Shingo Kameda14, Tetsuharu Fuse15, Hideaki Miyamoto6, Goro Komatsu10, S. Sugita6, Tatsuaki Okada1, Tatsuaki Okada6, Noriyuki Namiki7, Masahiko Arakawa5, Masateru Ishiguro16, Masanao Abe7, Masanao Abe1, Robert Gaskell17, Eric Palmer17, Olivier S. Barnouin18, Patrick Michel19, A. S. French20, Jay W. McMahon20, Daniel J. Scheeres20, Paul A. Abell, Yukio Yamamoto7, Yukio Yamamoto1, Satoshi Tanaka1, Satoshi Tanaka7, Kei Shirai1, Moe Matsuoka1, Manabu Yamada10, Y. Yokota1, Y. Yokota13, H. Suzuki21, Kosuke Yoshioka6, Yuichiro Cho6, Naoki Nishikawa5, T. Sugiyama4, Hideaki Kikuchi6, Ryodo Hemmi6, Tomohiro Yamaguchi1, Naoko Ogawa1, Go Ono, Yuya Mimasu1, Kent Yoshikawa, T. Takahashi1, Yuto Takei1, Atsushi Fujii1, Chikako Hirose, Takahiro Iwata7, Takahiro Iwata1, Masahiro Hayakawa1, Satoshi Hosoda1, Osamu Mori1, Hirotaka Sawada1, Takanobu Shimada1, Stefania Soldini1, Hajime Yano7, Hajime Yano1, Ryudo Tsukizaki1, M. Ozaki7, M. Ozaki1, Yuichi Iijima1, K. Ogawa5, Masaki Fujimoto1, T. M. Ho22, Aurelie Moussi23, Ralf Jaumann, J. P. Bibring, Christian Krause, Fuyuto Terui1, Takanao Saiki1, Satoru Nakazawa1, Yoshiyuki Tsuda7, Yoshiyuki Tsuda1 
19 Mar 2019-Science
TL;DR: The Hayabusa2 spacecraft measured the mass, size, shape, density, and spin rate of asteroid Ryugu, showing that it is a porous rubble pile, and observations of Ryugu's shape, mass, and geomorphology suggest that Ryugu was reshaped by centrifugally induced deformation during a period of rapid rotation.
Abstract: The Hayabusa2 spacecraft arrived at the near-Earth carbonaceous asteroid 162173 Ryugu in 2018. We present Hayabusa2 observations of Ryugu’s shape, mass, and geomorphology. Ryugu has an oblate “spinning top” shape, with a prominent circular equatorial ridge. Its bulk density, 1.19 ± 0.02 grams per cubic centimeter, indicates a high-porosity (>50%) interior. Large surface boulders suggest a rubble-pile structure. Surface slope analysis shows Ryugu’s shape may have been produced from having once spun at twice the current rate. Coupled with the observed global material homogeneity, this suggests that Ryugu was reshaped by centrifugally induced deformation during a period of rapid rotation. From these remote-sensing investigations, we identified a suitable sample collection site on the equatorial ridge.

402 citations

Journal ArticleDOI
23 Dec 2004-Nature
TL;DR: It is shown that calderas on five major volcanoes on Mars have undergone repeated activation and resurfacing during the last 20 per cent of martian history, with phases of activity as young as two million years, suggesting that the volcanoes are potentially still active today.
Abstract: The large-area coverage at a resolution of 10–20 metres per pixel in colour and three dimensions with the High Resolution Stereo Camera Experiment on the European Space Agency Mars Express Mission has made it possible to study the time-stratigraphic relationships of volcanic and glacial structures in unprecedented detail and give insight into the geological evolution of Mars. Here we show that calderas on five major volcanoes on Mars have undergone repeated activation and resurfacing during the last 20 per cent of martian history, with phases of activity as young as two million years, suggesting that the volcanoes are potentially still active today. Glacial deposits at the base of the Olympus Mons escarpment show evidence for repeated phases of activity as recently as about four million years ago. Morphological evidence is found that snow and ice deposition on the Olympus construct at elevations of more than 7,000 metres led to episodes of glacial activity at this height. Even now, water ice protected by an insulating layer of dust may be present at high altitudes on Olympus Mons.

402 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars.
Abstract: Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et?al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et?al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67?AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70?AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200?K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T eff 5000?K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest that conservative estimates of the HZ (water-loss and maximum greenhouse limits) should be used for current RV surveys and Kepler mission to obtain a lower limit on ??, so that future flagship missions like TPF-C and Darwin are not undersized. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.

1,526 citations

Journal ArticleDOI
TL;DR: The HiRISE camera as mentioned in this paper provides detailed images (0.25 to 1.3 m/pixel) covering ∼1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006.
Abstract: [1] The HiRISE camera features a 0.5 m diameter primary mirror, 12 m effective focal length, and a focal plane system that can acquire images containing up to 28 Gb (gigabits) of data in as little as 6 seconds. HiRISE will provide detailed images (0.25 to 1.3 m/pixel) covering ∼1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006. Most images will include color data covering 20% of the potential field of view. A top priority is to acquire ∼1000 stereo pairs and apply precision geometric corrections to enable topographic measurements to better than 25 cm vertical precision. We expect to return more than 12 Tb of HiRISE data during the 2-year PSP, and use pixel binning, conversion from 14 to 8 bit values, and a lossless compression system to increase coverage. HiRISE images are acquired via 14 CCD detectors, each with 2 output channels, and with multiple choices for pixel binning and number of Time Delay and Integration lines. HiRISE will support Mars exploration by locating and characterizing past, present, and future landing sites, unsuccessful landing sites, and past and potentially future rover traverses. We will investigate cratering, volcanism, tectonism, hydrology, sedimentary processes, stratigraphy, aeolian processes, mass wasting, landscape evolution, seasonal processes, climate change, spectrophotometry, glacial and periglacial processes, polar geology, and regolith properties. An Internet Web site (HiWeb) will enable anyone in the world to suggest HiRISE targets on Mars and to easily locate, view, and download HiRISE data products.

1,511 citations

Journal ArticleDOI
21 Apr 2006-Science
TL;DR: Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history.
Abstract: Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are found in the oldest terrains; sulfates were formed in a second era (the "theiikian" era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the "siderikian") is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.

1,480 citations

Journal ArticleDOI
TL;DR: The physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices are reviewed.
Abstract: The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols This article presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices We also discuss the physics of wind-blown sand and dune formation on Venus and Titan

1,175 citations