scispace - formally typeset
Search or ask a question
Author

Ralf Rabus

Bio: Ralf Rabus is an academic researcher from University of Oldenburg. The author has contributed to research in topics: Sulfate-reducing bacteria & Biodegradation. The author has an hindex of 49, co-authored 147 publications receiving 9491 citations. Previous affiliations of Ralf Rabus include University of Freiburg & University of California, San Diego.


Papers
More filters
Journal ArticleDOI
TL;DR: Saturated and aromatic hydrocarbons are wide-spread in the authors' environment and for many decades were thought to undergo biodegradation only in the presence of free oxygen, but during the past decade, an increasing number of microorganisms have been detected that degradation under strictly anoxic conditions.

657 citations

Journal ArticleDOI
TL;DR: Phylogenetic analysis of all relevant markers clearly affiliates the Planctomycetales to the domain Bacteria as a distinct phylum, but a deepest branching is not supported by the authors' analyses.
Abstract: Pirellula sp. strain 1 ("Rhodopirellula baltica") is a marine representative of the globally distributed and environmentally important bacterial order Planctomycetales. Here we report the complete genome sequence of a member of this independent phylum. With 7.145 megabases, Pirellula sp. strain 1 has the largest circular bacterial genome sequenced so far. The presence of all genes required for heterolactic acid fermentation, key genes for the interconversion of C1 compounds, and 110 sulfatases were unexpected for this aerobic heterotrophic isolate. Although Pirellula sp. strain 1 has a proteinaceous cell wall, remnants of genes for peptidoglycan synthesis were found. Genes for lipid A biosynthesis and homologues to the flagellar L- and P-ring protein indicate a former Gram-negative type of cell wall. Phylogenetic analysis of all relevant markers clearly affiliates the Planctomycetales to the domain Bacteria as a distinct phylum, but a deepest branching is not supported by our analyses.

470 citations

Journal ArticleDOI
01 Dec 1994-Nature
TL;DR: In this paper, a mesophilic sulphate-reducing enrichment culture is shown to oxidize alkylbenzenes in oil. But the authors did not identify the actual electron donors and carbon sources.
Abstract: Many crude oil constituents are biodegradable in the presence of oxygen; however, a substantial anaerobic degradation has never been demonstrated. An unusually low content of n-alkanes in oils of certain deposits is commonly attributed to selective utilization of these hydrocarbons by aerobic microorganisms. On the other hand, oil wells and production fluids were shown to harbour anaerobic sulphate-reducing bacteria, but their actual electron donors and carbon sources were unknown. On the basis of nutritional properties of various bacterial isolates it was assumed that fatty acids and H2 are potential electron donors for sulphate reduction in situ. Here we demonstrate that hydrocarbons in crude oil are used directly by sulphate-reducing bacteria growing under strictly anoxic conditions. A moderately thermophilic pure culture selectively utilizes n-alkanes in oil for sulphate reduction to sulphide. In addition, a mesophilic sulphate-reducing enrichment culture is shown to oxidize alkylbenzenes in oil. Thus, sulphate-reducing bacteria utilizing aliphatic and aromatic hydrocarbons as electron donors may present a significant source of sulphide in oil deposits and oil production plants.

460 citations

Journal ArticleDOI
TL;DR: Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate to identify two new denitrifying strains and reveal a close relationship of the new isolates to Thauera selenatis.
Abstract: Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate. Two new denitrifying strains, EbN1 and PbN1, were isolated on ethylbenzene and n-propylbenzene, respectively. For comparison, two further denitrifying strains, ToN1 and mXyN1, were isolated from the same mud with toluene and m-xylene, respectively. Sequencing of 16SrDNA revealed a close relationship of the new isolates to Thauera selenatis. The strains exhibited different specific capacities for degradation of alkylbenzenes. In addition to ethylbenzene, strain EbN1 utilized toluene, but not propylbenzene. In contrast, propylbenzene-degrading strain PbN1 did not grow on toluene, but was able to utilize ethylbenzene. Strain ToN1 used toluene as the only hydrocarbon substrate, whereas strain mXyN1 utilized both toluene and m-xylene. Measurement of the degradation balance demonstrated complete oxidation of ethylbenzene to CO2 by strain EbN1. Further characteristic substrates of strains EbN1 and PbN1 were 1-phenylethanol and acetophenone. In contrast to the other isolates, stain mXyN1 did not grow on benzyl alcohol. Benzyl alcohol (also m-methyl-benzyl alcohol) was even a specific inhibitor of toluene and m-xylene utilization by strain mXyN1. None of the strains was able to grow on any of the alkylbenzenes with oxygen as electron acceptor. However, polar aromatic compounds such as benzoate were utilized under both oxic and anoxic conditions. All four isolates grew anaerobically on crude oil. Gas chromatographic analysis of crude oil after growth of strain ToN1 revealed specific depletion of toluene.

392 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
14 Dec 2000-Nature
TL;DR: This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.
Abstract: The flowering plant Arabidopsis thaliana is an important model system for identifying genes and determining their functions. Here we report the analysis of the genomic sequence of Arabidopsis. The sequenced regions cover 115.4 megabases of the 125-megabase genome and extend into centromeric regions. The evolution of Arabidopsis involved a whole-genome duplication, followed by subsequent gene loss and extensive local gene duplications, giving rise to a dynamic genome enriched by lateral gene transfer from a cyanobacterial-like ancestor of the plastid. The genome contains 25,498 genes encoding proteins from 11,000 families, similar to the functional diversity of Drosophila and Caenorhabditis elegans--the other sequenced multicellular eukaryotes. Arabidopsis has many families of new proteins but also lacks several common protein families, indicating that the sets of common proteins have undergone differential expansion and contraction in the three multicellular eukaryotes. This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.

8,742 citations

Journal ArticleDOI
03 Oct 2002-Nature
TL;DR: The genome sequence of P. falciparum clone 3D7 is reported, which is the most (A + T)-rich genome sequenced to date and is being exploited in the search for new drugs and vaccines to fight malaria.
Abstract: The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.

4,312 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1.
Abstract: Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.

3,232 citations