scispace - formally typeset
Search or ask a question
Author

Ralph E. Hudson

Bio: Ralph E. Hudson is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Beamforming & Sensor array. The author has an hindex of 21, co-authored 74 publications receiving 2268 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed maximum-likelihood location estimator for wideband sources in the near field of the sensor array is derived and is shown to yield superior performance over other suboptimal techniques, including the wideband MUSIC and the two-step least-squares methods.
Abstract: In this paper, we derive the maximum-likelihood (ML) location estimator for wideband sources in the near field of the sensor array. The ML estimator is optimized in a single step, as opposed to other estimators that are optimized separately in relative time-delay and source location estimations. For the multisource case, we propose and demonstrate an efficient alternating projection procedure based on sequential iterative search on single-source parameters. The proposed algorithm is shown to yield superior performance over other suboptimal techniques, including the wideband MUSIC and the two-step least-squares methods, and is efficient with respect to the derived Cramer-Rao bound (CRB). From the CRB analysis, we find that better source location estimates can be obtained for high-frequency signals than low-frequency signals. In addition, large range estimation error results when the source signal is unknown, but such unknown parameter does not have much impact on angle estimation. In some applications, the locations of some sensors may be unknown and must be estimated. The proposed method is extended to estimate the range from a source to an unknown sensor location. After a number of source-location frames, the location of the uncalibrated sensor can be determined based on a least-squares unknown sensor location estimator.

545 citations

Journal ArticleDOI
TL;DR: Results based on analysis, simulation, and measured acoustical sensor data show the effectiveness of this beamforming technique for signal enhancement and space-time filtering.
Abstract: We consider a digital signal processing sensor array system, based on randomly distributed sensor nodes, for surveillance and source localization applications. In most array processing the sensor array geometry is fixed and known and the steering array vector/manifold information is used in beamformation. In this system, array calibration may be impractical due to unknown placement and orientation of the sensors with unknown frequency/spatial responses. This paper proposes a blind beamforming technique, using only the measured sensor data, to form either a sample data or a sample correlation matrix. The maximum power collection criterion is used to obtain array weights from the dominant eigenvector associated with the largest eigenvalue of a matrix eigenvalue problem. Theoretical justification of this approach uses a generalization of Szego's (1958) theory of the asymptotic distribution of eigenvalues of the Toeplitz form. An efficient blind beamforming time delay estimate of the dominant source is proposed. Source localization based on a least squares (LS) method for time delay estimation is also given. Results based on analysis, simulation, and measured acoustical sensor data show the effectiveness of this beamforming technique for signal enhancement and space-time filtering.

300 citations

Journal ArticleDOI
11 Aug 2003
TL;DR: In this paper, the authors consider the problem of coherent acoustic sensor array processing and localization on distributed wireless sensor networks and introduce some basic concepts of beamforming and localization for wide-band acoustic sources.
Abstract: Advances in microelectronics, array processing, and wireless networking have motivated the analysis and design of low-cost integrated sensing, computing, and communicating nodes capable of performing various demanding collaborative space-time processing tasks. In this paper, we consider the problem of coherent acoustic sensor array processing and localization on distributed wireless sensor networks. We first introduce some basic concepts of beamforming and localization for wide-band acoustic sources. A review of various known localization algorithms based on time-delay followed by least-squares estimations as well as the maximum-likelihood method is given. Issues related to practical implementation of coherent array processing, including the need for fine-grain time synchronization, are discussed. Then we describe the implementation of a Linux-based wireless networked acoustic sensor array testbed, utilizing commercially available iPAQs with built-in microphones, codecs, and microprocessors, plus wireless Ethernet cards, to perform acoustic source localization. Various field-measured results using two localization algorithms show the effectiveness of the proposed testbed. An extensive list of references related to this work is also included.

181 citations

Journal Article
TL;DR: This paper describes the implementation of a Linux-based wireless networked acoustic sensor array testbed, utilizing commercially available iPAQs with built-in microphones, codecs, and microprocessors, plus wireless Ethernet cards, to perform acoustic source localization.
Abstract: Advances in microelectronics, array processing, and wireless networking have motivated the analysis and design of low-cost integrated sensing, computing, and communicating nodes capable of performing various demanding collaborative space–time processing tasks In this paper, we consider the problem of coherent acoustic sensor array processing and localization on distributed wireless sensor networks We first introduce some basic concepts of beamforming and localization for wide-band acoustic sources A review of various known localization algorithms based on time-delay followed by least-squares estimations as well as the maximum–likelihood method is given Issues related to practical implementation of coherent array processing, including the need for fine-grain time synchronization, are discussed Then we describe the implementation of a Linux-based wireless networked acoustic sensor array testbed, utilizing commercially available iPAQs with built-in microphones, codecs, and microprocessors, plus wireless Ethernet cards, to perform acoustic source localization Various field-measured results using two localization algorithms show the effectiveness of the proposed testbed An extensive list of references related to this work is also included

172 citations

Journal ArticleDOI
TL;DR: A new stochastic ML DOA estimator is derived based on an iterative procedure which concentrates the log-likelihood function with respect to the signal and noise nuisance parameters in a stepwise fashion and a modified inverse iteration algorithm is presented for the estimation of the noise parameters.
Abstract: This correspondence investigates the direction-of-arrival (DOA) estimation of multiple narrowband sources in the presence of nonuniform white noise with an arbitrary diagonal covariance matrix. While both the deterministic and stochastic Cramer-Rao bound (CRB) and the deterministic maximum-likelihood (ML) DOA estimator under this model have been derived by Pesavento and Gershman, the stochastic ML DOA estimator under the same setting is still not available in the literature. In this correspondence, a new stochastic ML DOA estimator is derived. Its implementation is based on an iterative procedure which concentrates the log-likelihood function with respect to the signal and noise nuisance parameters in a stepwise fashion. A modified inverse iteration algorithm is also presented for the estimation of the noise parameters. Simulation results have shown that the proposed algorithm is able to provide significant performance improvement over the conventional uniform ML estimator in nonuniform noise environments and require only a few iterations to converge to the nonuniform stochastic CRB.

108 citations


Cited by
More filters
Proceedings ArticleDOI
04 Jan 2000
TL;DR: The Low-Energy Adaptive Clustering Hierarchy (LEACH) as mentioned in this paper is a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network.
Abstract: Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our findings that the conventional protocols of direct transmission, minimum-transmission-energy, multi-hop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show the LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional outing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.

12,497 citations

01 Jan 2000
TL;DR: LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network, is proposed.
Abstract: Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have signicant impact on the overall energy dissipation of these networks. Based on our ndings that the conventional protocols of direct transmission, minimum-transmission-energy, multihop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster base stations (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show that LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional routing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.

11,412 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations

Journal ArticleDOI
TL;DR: The WINS network represents a new monitoring and control capability for applications in such industries as transportation, manufacturing, health care, environmental oversight, and safety and security, and opportunities depend on development of a scalable, low-cost, sensor-network architecture.
Abstract: W ireless integrated network sensors (WINS) provide distributed network and Internet access to sensors, controls, and processors deeply embedded in equipment, facilities, and the environment. The WINS network represents a new monitoring and control capability for applications in such industries as transportation, manufacturing, health care, environmental oversight, and safety and security. WINS combine microsensor technology and low-power signal processing, computation, and low-cost wireless networking in a compact system. Recent advances in integrated circuit technology have enabled construction of far more capable yet inexpensive sensors, radios, and processors, allowing mass production of sophisticated systems linking the physical world to digital data networks [2–5]. Scales range from local to global for applications in medicine, security, factory automation, environmental monitoring, and condition-based maintenance. Compact geometry and low cost allow WINS to be embedded and distributed at a fraction of the cost of conventional wireline sensor and actuator systems. WINS opportunities depend on development of a scalable, low-cost, sensor-network architecture. Such applications require delivery of sensor information to the user at a low bit rate through low-power transceivers. Continuous sensor signal processing enables the constant monitoring of events in an environment in which short message packets would suffice. Future applications of distributed embedded processors and sensors will require vast numbers of devices. Conventional methods of sensor networking represent an impractical demand on cable installation and network bandwidth. Processing at the source would drastically reduce the financial, computational, and management burden on communication system

3,415 citations

Journal ArticleDOI
09 Dec 2002
TL;DR: Reference Broadcast Synchronization (RBS) as discussed by the authors is a scheme in which nodes send reference beacons to their neighbors using physical-layer broadcasts, and receivers use their arrival time as a point of reference for comparing their clocks.
Abstract: Recent advances in miniaturization and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low-power sensors and actuators. Time synchronization is critical in sensor networks for diverse purposes including sensor data fusion, coordinated actuation, and power-efficient duty cycling. Though the clock accuracy and precision requirements are often stricter than in traditional distributed systems, strict energy constraints limit the resources available to meet these goals.We present Reference-Broadcast Synchronization, a scheme in which nodes send reference beacons to their neighbors using physical-layer broadcasts. A reference broadcast does not contain an explicit timestamp; instead, receivers use its arrival time as a point of reference for comparing their clocks. In this paper, we use measurements from two wireless implementations to show that removing the sender's nondeterminism from the critical path in this way produces high-precision clock agreement (1.85 ± 1.28μsec, using off-the-shelf 802.11 wireless Ethernet), while using minimal energy. We also describe a novel algorithm that uses this same broadcast property to federate clocks across broadcast domains with a slow decay in precision (3.68 ± 2.57μsec after 4 hops). RBS can be used without external references, forming a precise relative timescale, or can maintain microsecond-level synchronization to an external timescale such as UTC. We show a significant improvement over the Network Time Protocol (NTP) under similar conditions.

2,537 citations