scispace - formally typeset
Search or ask a question
Author

Rama Shanker Verma

Bio: Rama Shanker Verma is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Mesenchymal stem cell & Stem cell. The author has an hindex of 30, co-authored 159 publications receiving 3160 citations. Previous affiliations of Rama Shanker Verma include University of Pennsylvania & Thapar University.


Papers
More filters
Journal ArticleDOI
TL;DR: This review will focus on the accumulating evidence that points to the therapeutic potential of the conditioned medium, both from pre-clinical and clinical studies, and the importance of profiling the conditionedmedium for assessing its potential for cell-free therapy therapy.

224 citations

Journal ArticleDOI
TL;DR: The present review focuses on recent approaches for colon-specific drug delivery (CDDS) and aims to unveil the emerging possibilities and advances in the treatment of CC with CDDS.

147 citations

Journal ArticleDOI
TL;DR: The recent advancements in immunosensing techniques that were developed exploiting the unique properties of gold nanoparticles are explored and the possible future trends with respect to gold nanoparticle-coupled microfluidic sensors; paper based analytical devices and the single-molecule biosensing are discussed.

145 citations

Journal ArticleDOI
TL;DR: A novel generation of immunotoxins in which the cytotoxic moiety is an endogenous protein of human origin like proapoptotic protein or RNase has been developed, and a review summarizes the advances in this new class of fusion protein and the future directions to be explored.
Abstract: Chemotherapy, radiation, and surgery are the conventional treatment modalities for cancer. The success achieved with these approaches has been limited due to several factors like chemoresistance to drugs, non-specificity leading to peripheral toxicity, and non-resectable tumors. To combat these problems, the concept of targeted therapy using immunotoxins was developed. Immunotoxins are chimeric proteins with a cell-selective ligand chemically linked or genetically fused to a toxin moiety and can target cancer cells overexpressing tumor-associated antigens, membrane receptors, or carbohydrate antigens. Ligands for these receptors or monoclonal antibodies or single chain variable fragments directed against these antigens are fused with bacterial or plant toxins and are made use of as immunotoxins. Pseudomonas exotoxin, anthrax toxin, and diphtheria toxin are the commonly used bacterial toxins. Ricin, saporin, gelonin, and poke weed antiviral protein are the plant toxins utilized in immunotoxin constructs. Several such fusion proteins are in clinical trials, and denileukin difitox is a FDA-approved fusion protein. In spite of the promise shown by bacterial- and plant toxin-based chimeric proteins, their clinical application is hampered by several factors like immunogenicity of the toxin moiety and non-specific toxicity leading to vascular leak syndrome. In order to overcome these problems, a novel generation of immunotoxins in which the cytotoxic moiety is an endogenous protein of human origin like proapoptotic protein or RNase has been developed. This review summarizes the advances in this new class of fusion protein and the future directions to be explored.

140 citations

Journal ArticleDOI
TL;DR: An improved method for rapid isolation of cardiomyocytes from neonatal mice, as well as the maintenance and propagation of such cultures for the long term is described.
Abstract: The primary culture of neonatal mice cardiomyocyte model enables researchers to study and understand the morphological, biochemical, and electrophysiological characteristics of the heart, besides being a valuable tool for pharmacological and toxicological studies. Because cardiomyocytes do not proliferate after birth, primary myocardial culture is recalcitrant. The present study describes an improved method for rapid isolation of cardiomyocytes from neonatal mice, as well as the maintenance and propagation of such cultures for the long term. Immunocytochemical and gene expression data also confirmed the presence of several cardiac markers in the beating cells during the long-term culture condition used in this protocol. The whole culture process can be effectively shortened by reducing the enzyme digestion period and the cardiomyocyte enrichment step.

105 citations


Cited by
More filters
Journal ArticleDOI
23 Oct 2003-Nature
TL;DR: Osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation.
Abstract: Stem cell fate is influenced by specialized microenvironments that remain poorly defined in mammals. To explore the possibility that haematopoietic stem cells derive regulatory information from bone, accounting for the localization of haematopoiesis in bone marrow, we assessed mice that were genetically altered to produce osteoblast-specific, activated PTH/PTHrP receptors (PPRs). Here we show that PPR-stimulated osteoblastic cells that are increased in number produce high levels of the Notch ligand jagged 1 and support an increase in the number of haematopoietic stem cells with evidence of Notch1 activation in vivo. Furthermore, ligand-dependent activation of PPR with parathyroid hormone (PTH) increased the number of osteoblasts in stromal cultures, and augmented ex vivo primitive haematopoietic cell growth that was abrogated by gamma-secretase inhibition of Notch activation. An increase in the number of stem cells was observed in wild-type animals after PTH injection, and survival after bone marrow transplantation was markedly improved. Therefore, osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation. Niche constituent cells or signalling pathways provide pharmacological targets with therapeutic potential for stem-cell-based therapies.

3,434 citations

Journal ArticleDOI
TL;DR: The evidence for ligand-induced generation of ROS, its cellular sources, and the signaling pathways that are activated is examined.
Abstract: Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. When cellular production of ROS overwhelms its antioxidant capacity, damage to cellular macromolecules such as lipids, protein, and DNA may ensue. Such a state of “oxidative stress” is thought to contribute to the pathogenesis of a number of human diseases including those of the lung. Recent studies have also implicated ROS that are generated by specialized plasma membrane oxidases in normal physiological signaling by growth factors and cytokines. In this review, we examine the evidence for ligand-induced generation of ROS, its cellular sources, and the signaling pathways that are activated. Emerging concepts on the mechanisms of signal transduction by ROS that involve alterations in cellular redox state and oxidative modifications of proteins are also discussed.

2,757 citations

Journal ArticleDOI
03 Nov 1989-Science
TL;DR: This work has shown that switches in and out of G1 are the main determinants of post-embryonic cell proliferation rate and are defectively controlled in cancer cells.
Abstract: Cells prepare for S phase during the G1 phase of the cell cycle. Cell biological methods have provided knowledge of cycle kinetics and of substages of G1 that are determined by extracellular signals. Through the use of biochemical and molecular biological techniques to study effects of growth factors, oncogenes, and inhibitors, intracellular events during G1 that lead to DNA synthesis are rapidly being discovered. Many cells in vivo are in a quiescent state (G0), with unduplicated DNA. Cells can be activated to reenter the cycle during G1. Similarly, cells in culture can be shifted between G0 and G1. These switches in and out of G1 are the main determinants of post-embryonic cell proliferation rate and are defectively controlled in cancer cells.

2,235 citations

DOI
01 Jan 2020

1,967 citations

Journal ArticleDOI
23 Oct 2003-Nature
TL;DR: A wide range of digestive tract tumours, including most of those originating in the oesophagus, stomach, biliary tract and pancreas, but not in the colon, display increased Hh pathway activity, which is suppressible by cyclopamine, a Hh pathways antagonist.
Abstract: Activation of the Hedgehog (Hh) signalling pathway by sporadic mutations or in familial conditions such as Gorlin's syndrome is associated with tumorigenesis in skin, the cerebellum and skeletal muscle. Here we show that a wide range of digestive tract tumours, including most of those originating in the oesophagus, stomach, biliary tract and pancreas, but not in the colon, display increased Hh pathway activity, which is suppressible by cyclopamine, a Hh pathway antagonist. Cyclopamine also suppresses cell growth in vitro and causes durable regression of xenograft tumours in vivo. Unlike in Gorlin's syndrome tumours, pathway activity and cell growth in these digestive tract tumours are driven by endogenous expression of Hh ligands, as indicated by the presence of Sonic hedgehog and Indian hedgehog transcripts, by the pathway- and growth-inhibitory activity of a Hh-neutralizing antibody, and by the dramatic growth-stimulatory activity of exogenously added Hh ligand. Our results identify a group of common lethal malignancies in which Hh pathway activity, essential for tumour growth, is activated not by mutation but by ligand expression.

1,297 citations