scispace - formally typeset
Search or ask a question
Author

Rama Shanker Verma

Bio: Rama Shanker Verma is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Mesenchymal stem cell & Stem cell. The author has an hindex of 30, co-authored 159 publications receiving 3160 citations. Previous affiliations of Rama Shanker Verma include University of Pennsylvania & Thapar University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the morphological characteristics of bioaerosols from marine urban and high altitude continental regions in Southern India were analyzed using Scanning Electron Microscope (SEM) coupled with Energy-dispersive Spectra Detector (EDX/EDS).

29 citations

Journal ArticleDOI
TL;DR: The importance of polymeric materials in the next-generation diagnostic approaches for cardiovascular health care is summarized in this review, highlighting recent biosensor platforms in real-time biosensing cardiovascular health and disease application.

29 citations

Journal ArticleDOI
TL;DR: A Bio-Hybrid scaffold with non-cross linked DBPECM in its native structure coated with a layer of Polycaprolactone-Chitosan (PCL-CH) nanofibers that displayed superior mechanical properties is developed.

28 citations

Journal ArticleDOI
TL;DR: The role of simulation of microgravity (SMG) using rotary cell culture system (RCCS) in increasing stemness in human colorectal cancer cell HCT116 is described and distinct features of cancer stem cells including CD133/CD44 dual positive cells and migration are observed in SMG which was not altered by autophagy induction or inhibition.
Abstract: Physical cues are vital in determining cellular fate in cancer. In vitro 3D culture do not replicate forces present in vivo. These forces including tumor interstitial fluid pressure and matrix stiffness behave as switches in differentiation and metastasis, which are intricate features of cancer stem cells (CSCs). Gravity determines the effect of these physical factors on cell fate and functions as evident from microgravity experiments on space and ground simulations. Here, we described the role of simulation of microgravity (SMG) using rotary cell culture system (RCCS) in increasing stemness in human colorectal cancer cell HCT116. We observed distinct features of cancer stem cells including CD133/CD44 dual positive cells and migration in SMG which was not altered by autophagy induction or inhibition. 3D and SMG increased autophagy, but the flux was staggered under SMG. Increased unique giant cancer cells housing complete nuclear localization of YAP were observed in SMG. This study highlights the role of microgravity in regulating stemness in CSC and importance of physical factors in determining the same.

28 citations

Journal ArticleDOI
10 Jan 2017-PLOS ONE
TL;DR: The findings from this ecosystem of India will enhance the understanding of the distribution, diversity, ecology, and biological prospects of terrestrial macrofungi as well as their potential to contribute to airborne fungal aerosols.
Abstract: Macrofungi have long been investigated for various scientific purposes including their food and medicinal characteristics. Their role in aerobiology as a fraction of the primary biological aerosol particles (PBAPs), however, has been poorly studied. In this study, we present a source of macrofungi with two different but interdependent objectives: (i) to characterize the macrofungi from a tropical dry evergreen biome in southern India using advanced molecular techniques to enrich the database from this region, and (ii) to assess whether identified species of macrofungi are a potential source of atmospheric PBAPs. From the DNA analysis, we report the diversity of the terrestrial macrofungi from a tropical dry evergreen biome robustly supported by the statistical analyses for diversity conclusions. A total of 113 macrofungal species belonging to 54 genera and 23 families were recorded, with Basidiomycota and Ascomycota constituting 96% and 4% of the species, respectively. The highest species richness was found in the family Agaricaceae (25.3%) followed by Polyporaceae (15.3%) and Marasmiaceae (10.8%). The difference in the distribution of commonly observed macrofungal families over this location was compared with other locations in India (Karnataka, Kerala, Maharashtra, and West Bengal) using two statistical tests. The distributions of the terrestrial macrofungi were distinctly different in each ecosystem. We further attempted to demonstrate the potential role of terrestrial macrofungi as a source of PBAPs in ambient air. In our opinion, the findings from this ecosystem of India will enhance our understanding of the distribution, diversity, ecology, and biological prospects of terrestrial macrofungi as well as their potential to contribute to airborne fungal aerosols.

28 citations


Cited by
More filters
Journal ArticleDOI
23 Oct 2003-Nature
TL;DR: Osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation.
Abstract: Stem cell fate is influenced by specialized microenvironments that remain poorly defined in mammals. To explore the possibility that haematopoietic stem cells derive regulatory information from bone, accounting for the localization of haematopoiesis in bone marrow, we assessed mice that were genetically altered to produce osteoblast-specific, activated PTH/PTHrP receptors (PPRs). Here we show that PPR-stimulated osteoblastic cells that are increased in number produce high levels of the Notch ligand jagged 1 and support an increase in the number of haematopoietic stem cells with evidence of Notch1 activation in vivo. Furthermore, ligand-dependent activation of PPR with parathyroid hormone (PTH) increased the number of osteoblasts in stromal cultures, and augmented ex vivo primitive haematopoietic cell growth that was abrogated by gamma-secretase inhibition of Notch activation. An increase in the number of stem cells was observed in wild-type animals after PTH injection, and survival after bone marrow transplantation was markedly improved. Therefore, osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation. Niche constituent cells or signalling pathways provide pharmacological targets with therapeutic potential for stem-cell-based therapies.

3,434 citations

Journal ArticleDOI
TL;DR: The evidence for ligand-induced generation of ROS, its cellular sources, and the signaling pathways that are activated is examined.
Abstract: Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. When cellular production of ROS overwhelms its antioxidant capacity, damage to cellular macromolecules such as lipids, protein, and DNA may ensue. Such a state of “oxidative stress” is thought to contribute to the pathogenesis of a number of human diseases including those of the lung. Recent studies have also implicated ROS that are generated by specialized plasma membrane oxidases in normal physiological signaling by growth factors and cytokines. In this review, we examine the evidence for ligand-induced generation of ROS, its cellular sources, and the signaling pathways that are activated. Emerging concepts on the mechanisms of signal transduction by ROS that involve alterations in cellular redox state and oxidative modifications of proteins are also discussed.

2,757 citations

Journal ArticleDOI
03 Nov 1989-Science
TL;DR: This work has shown that switches in and out of G1 are the main determinants of post-embryonic cell proliferation rate and are defectively controlled in cancer cells.
Abstract: Cells prepare for S phase during the G1 phase of the cell cycle. Cell biological methods have provided knowledge of cycle kinetics and of substages of G1 that are determined by extracellular signals. Through the use of biochemical and molecular biological techniques to study effects of growth factors, oncogenes, and inhibitors, intracellular events during G1 that lead to DNA synthesis are rapidly being discovered. Many cells in vivo are in a quiescent state (G0), with unduplicated DNA. Cells can be activated to reenter the cycle during G1. Similarly, cells in culture can be shifted between G0 and G1. These switches in and out of G1 are the main determinants of post-embryonic cell proliferation rate and are defectively controlled in cancer cells.

2,235 citations

DOI
01 Jan 2020

1,967 citations

Journal ArticleDOI
23 Oct 2003-Nature
TL;DR: A wide range of digestive tract tumours, including most of those originating in the oesophagus, stomach, biliary tract and pancreas, but not in the colon, display increased Hh pathway activity, which is suppressible by cyclopamine, a Hh pathways antagonist.
Abstract: Activation of the Hedgehog (Hh) signalling pathway by sporadic mutations or in familial conditions such as Gorlin's syndrome is associated with tumorigenesis in skin, the cerebellum and skeletal muscle. Here we show that a wide range of digestive tract tumours, including most of those originating in the oesophagus, stomach, biliary tract and pancreas, but not in the colon, display increased Hh pathway activity, which is suppressible by cyclopamine, a Hh pathway antagonist. Cyclopamine also suppresses cell growth in vitro and causes durable regression of xenograft tumours in vivo. Unlike in Gorlin's syndrome tumours, pathway activity and cell growth in these digestive tract tumours are driven by endogenous expression of Hh ligands, as indicated by the presence of Sonic hedgehog and Indian hedgehog transcripts, by the pathway- and growth-inhibitory activity of a Hh-neutralizing antibody, and by the dramatic growth-stimulatory activity of exogenously added Hh ligand. Our results identify a group of common lethal malignancies in which Hh pathway activity, essential for tumour growth, is activated not by mutation but by ligand expression.

1,297 citations