scispace - formally typeset
Search or ask a question
Author

Ramakrishna Gummadi

Bio: Ramakrishna Gummadi is an academic researcher from University of Southern California. The author has contributed to research in topics: Wireless sensor network & Wireless network. The author has an hindex of 22, co-authored 32 publications receiving 7367 citations. Previous affiliations of Ramakrishna Gummadi include University of California, Berkeley & University of Massachusetts Amherst.

Papers
More filters
Journal ArticleDOI
12 Nov 2000
TL;DR: OceanStore monitoring of usage patterns allows adaptation to regional outages and denial of service attacks; monitoring also enhances performance through pro-active movement of data.
Abstract: OceanStore is a utility infrastructure designed to span the globe and provide continuous access to persistent information. Since this infrastructure is comprised of untrusted servers, data is protected through redundancy and cryptographic techniques. To improve performance, data is allowed to be cached anywhere, anytime. Additionally, monitoring of usage patterns allows adaptation to regional outages and denial of service attacks; monitoring also enhances performance through pro-active movement of data. A prototype implementation is currently under development.

3,376 citations

01 Jan 2001
TL;DR: This revised version of Adaptive RED, which can be implemented as a simple extension within RED routers, removes the sensitivity to parameters that affect RED’s performance and can reliably achieve a specified target average queue length in a wide variety of traffic scenarios.
Abstract: The RED active queue management algorithm allows network operators to simultaneously achieve high throughput and low average delay. However, the resulting average queue length is quite sensitive to the level of congestion and to the RED parameter settings, and is therefore not predictable in advance. Delay being a major component of the quality of service delivered to their customers, network operators would naturally like to have a rough a priori estimate of the average delays in their congested routers; to achieve such predictable average delays with RED would require constant tuning of the parameters to adjust to current traffic conditions. Our goal in this paper is to solve this problem with minimal changes to the overall RED algorithm. To do so, we revisit the Adaptive RED proposal of Feng et al. from 1997 [6, 7]. We make several algorithmic modifications to this proposal, while leaving the basic idea intact, and then evaluate its performance using simulation. We find that this revised version of Adaptive RED, which can be implemented as a simple extension within RED routers, removes the sensitivity to parameters that affect RED’s performance and can reliably achieve a specified target average queue length in a wide variety of traffic scenarios. Based on extensive simulations, we believe that Adaptive RED is sufficiently robust for deployment in routers.

738 citations

Proceedings ArticleDOI
25 Aug 2003
TL;DR: The basic finding is that, despite the initial preference for more complex geometries, the ring geometry allows the greatest flexibility, and hence achieves the best resilience and proximity performance.
Abstract: The various proposed DHT routing algorithms embody several different underlying routing geometries. These geometries include hypercubes, rings, tree-like structures, and butterfly networks. In this paper we focus on how these basic geometric approaches affect the resilience and proximity properties of DHTs. One factor that distinguishes these geometries is the degree of flexibility they provide in the selection of neighbors and routes. Flexibility is an important factor in achieving good static resilience and effective proximity neighbor and route selection. Our basic finding is that, despite our initial preference for more complex geometries, the ring geometry allows the greatest flexibility, and hence achieves the best resilience and proximity performance.

621 citations

Journal ArticleDOI
TL;DR: The Ninja project as mentioned in this paper is a workstation cluster environment with a software platform that simplifies scalable service construction, including base stations, units, services, and active proxies, which are transformational elements that are used for unit-or service-specific adaptation.

354 citations

Journal ArticleDOI
11 Aug 2006
TL;DR: Interferenceaware fair rate control (IFRC) detects incipient congestion at a node by monitoring the average queue length, communicates congestion state to exactly the set of potential interferers using a novel low-overhead congestion sharing mechanism, and converges to a fair and efficient rate using an AIMD control law.
Abstract: In a wireless sensor network of N nodes transmitting data to a single base station, possibly over multiple hops, what distributed mechanisms should be implemented in order to dynamically allocate fair and efficient transmission rates to each node? Our interferenceaware fair rate control (IFRC) detects incipient congestion at a node by monitoring the average queue length, communicates congestion state to exactly the set of potential interferers using a novel low-overhead congestion sharing mechanism, and converges to a fair and efficient rate using an AIMD control law. We evaluate IFRC extensively on a 40-node wireless sensor network testbed. IFRC achieves a fair and efficient rate allocation that is within 20-40% of the optimal fair rate allocation on some network topologies. Its rate adaptation mechanism is highly effective: we did not observe a single instance of queue overflow in our many experiments. Finally, IFRC can be extended easily to support situations where only a subset of the nodes transmit, where the network has multiple base stations, or where nodes are assigned different transmission weights.

313 citations


Cited by
More filters
Proceedings ArticleDOI
27 Aug 2001
TL;DR: Results from theoretical analysis, simulations, and experiments show that Chord is scalable, with communication cost and the state maintained by each node scaling logarithmically with the number of Chord nodes.
Abstract: A fundamental problem that confronts peer-to-peer applications is to efficiently locate the node that stores a particular data item. This paper presents Chord, a distributed lookup protocol that addresses this problem. Chord provides support for just one operation: given a key, it maps the key onto a node. Data location can be easily implemented on top of Chord by associating a key with each data item, and storing the key/data item pair at the node to which the key maps. Chord adapts efficiently as nodes join and leave the system, and can answer queries even if the system is continuously changing. Results from theoretical analysis, simulations, and experiments show that Chord is scalable, with communication cost and the state maintained by each node scaling logarithmically with the number of Chord nodes.

10,286 citations

Book ChapterDOI
TL;DR: Pastry as mentioned in this paper is a scalable, distributed object location and routing substrate for wide-area peer-to-peer ap- plications, which performs application-level routing and object location in a po- tentially very large overlay network of nodes connected via the Internet.
Abstract: This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing substrate for wide-area peer-to-peer ap- plications. Pastry performs application-level routing and object location in a po- tentially very large overlay network of nodes connected via the Internet. It can be used to support a variety of peer-to-peer applications, including global data storage, data sharing, group communication and naming. Each node in the Pastry network has a unique identifier (nodeId). When presented with a message and a key, a Pastry node efficiently routes the message to the node with a nodeId that is numerically closest to the key, among all currently live Pastry nodes. Each Pastry node keeps track of its immediate neighbors in the nodeId space, and notifies applications of new node arrivals, node failures and recoveries. Pastry takes into account network locality; it seeks to minimize the distance messages travel, according to a to scalar proximity metric like the number of IP routing hops. Pastry is completely decentralized, scalable, and self-organizing; it automatically adapts to the arrival, departure and failure of nodes. Experimental results obtained with a prototype implementation on an emulated network of up to 100,000 nodes confirm Pastry's scalability and efficiency, its ability to self-organize and adapt to node failures, and its good network locality properties.

7,423 citations

Proceedings ArticleDOI
27 Aug 2001
TL;DR: The concept of a Content-Addressable Network (CAN) as a distributed infrastructure that provides hash table-like functionality on Internet-like scales is introduced and its scalability, robustness and low-latency properties are demonstrated through simulation.
Abstract: Hash tables - which map "keys" onto "values" - are an essential building block in modern software systems. We believe a similar functionality would be equally valuable to large distributed systems. In this paper, we introduce the concept of a Content-Addressable Network (CAN) as a distributed infrastructure that provides hash table-like functionality on Internet-like scales. The CAN is scalable, fault-tolerant and completely self-organizing, and we demonstrate its scalability, robustness and low-latency properties through simulation.

6,703 citations

Proceedings ArticleDOI
14 Oct 2007
TL;DR: D Dynamo is presented, a highly available key-value storage system that some of Amazon's core services use to provide an "always-on" experience and makes extensive use of object versioning and application-assisted conflict resolution in a manner that provides a novel interface for developers to use.
Abstract: Reliability at massive scale is one of the biggest challenges we face at Amazon.com, one of the largest e-commerce operations in the world; even the slightest outage has significant financial consequences and impacts customer trust. The Amazon.com platform, which provides services for many web sites worldwide, is implemented on top of an infrastructure of tens of thousands of servers and network components located in many datacenters around the world. At this scale, small and large components fail continuously and the way persistent state is managed in the face of these failures drives the reliability and scalability of the software systems.This paper presents the design and implementation of Dynamo, a highly available key-value storage system that some of Amazon's core services use to provide an "always-on" experience. To achieve this level of availability, Dynamo sacrifices consistency under certain failure scenarios. It makes extensive use of object versioning and application-assisted conflict resolution in a manner that provides a novel interface for developers to use.

4,349 citations

Proceedings ArticleDOI
01 Dec 2009
TL;DR: Content-Centric Networking (CCN) is presented, which treats content as a primitive - decoupling location from identity, security and access, and retrieving content by name, using new approaches to routing named content.
Abstract: Network use has evolved to be dominated by content distribution and retrieval, while networking technology still speaks only of connections between hosts. Accessing content and services requires mapping from the what that users care about to the network's where. We present Content-Centric Networking (CCN) which treats content as a primitive - decoupling location from identity, security and access, and retrieving content by name. Using new approaches to routing named content, derived heavily from IP, we can simultaneously achieve scalability, security and performance. We implemented our architecture's basic features and demonstrate resilience and performance with secure file downloads and VoIP calls.

3,556 citations