scispace - formally typeset
Search or ask a question
Author

Ramesh C. Samanta

Bio: Ramesh C. Samanta is an academic researcher from University of Göttingen. The author has contributed to research in topics: Catalysis & Enantioselective synthesis. The author has an hindex of 14, co-authored 62 publications receiving 961 citations. Previous affiliations of Ramesh C. Samanta include University of Münster & Chubu University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This Concept article discusses the potential of oxidative carbene catalysis in synthesis and comprehensively covers pioneering studies as well as recent developments.
Abstract: This Concept article discusses the potential of oxidative carbene catalysis in synthesis and comprehensively covers pioneering studies as well as recent developments. Oxidative carbene catalysis can be conducted by using inorganic and organic oxidants. Applications in cascade processes, in enantioselective catalysis, and also in natural product synthesis are discussed.

392 citations

Journal ArticleDOI
TL;DR: The reaction of enals with β-diketones, β-ketoesters, and malonates bearing a β-oxyalkyl substituent at the α-position by oxidative NHC catalysis to provide highly substituted β-lactones is described.
Abstract: The reaction of enals with β-diketones, β-ketoesters, and malonates bearing a β-oxyalkyl substituent at the α-position by oxidative NHC catalysis to provide highly substituted β-lactones is described. Reactions occur with excellent diastereo- and enantioselectivity. The organo cascade comprises two CC bond formations and one CO bond formation. Up to four contiguous stereogenic centers including two fully substituted stereocenters are formed in the cascade.

130 citations

Journal ArticleDOI
TL;DR: Nickel-catalyzed electrochemical C-H aminations were accomplished by chemo- and position-selective C- H activation with ample scope by focusing on a facile C-h cleavage with unique cheme-selectivity.
Abstract: Nickel-catalyzed electrochemical C-H aminations were accomplished by chemo- and position-selective C-H activation with ample scope. Detailed mechanistic studies highlighted a facile C-H cleavage with unique chemo-selectivity, while cyclovoltammetric analysis provided support for a nickel(II/III/IV) manifold.

95 citations

Journal ArticleDOI
TL;DR: The first catalytic asymmetric bromonium ion-induced polyene cyclization has been achieved by using a chiral BINOL-derived thiophosphoramide catalyst and 1,3-dibromo-5,5-dimethylhydantoin as an electrophilic bromine source.
Abstract: The first catalytic asymmetric bromonium ion-induced polyene cyclization has been achieved by using a chiral BINOL-derived thiophosphoramide catalyst and 1,3-dibromo-5,5-dimethylhydantoin as an electrophilic bromine source. Bromocyclization products are obtained in high yields, with good enantiomeric ratios and high diastereoselectivity, and are abundantly found as scaffolds in natural products.

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018 is provided.
Abstract: C–H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C–H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C–H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C–H activation until summer 2018.

1,417 citations

Journal ArticleDOI
TL;DR: This work critically address both catalyst-free and catalytic radical reactions through the lens of radical chemistry, using basic principles of kinetics and thermodynamics to address problems of initiation, propagation, and inhibition of radical chains.
Abstract: The area of catalysis of radical reactions has recently flourished. Various reaction conditions have been discovered and explained in terms of catalytic cycles. These cycles rarely stand alone as unique paths from substrates to products. Instead, most radical reactions have innate chains which form products without any catalyst. How do we know if a species added in "catalytic amounts" is a catalyst, an initiator, or something else? Herein we critically address both catalyst-free and catalytic radical reactions through the lens of radical chemistry. Basic principles of kinetics and thermodynamics are used to address problems of initiation, propagation, and inhibition of radical chains. The catalysis of radical reactions differs from other areas of catalysis. Whereas efficient innate chain reactions are difficult to catalyze because individual steps are fast, both inefficient chain processes and non-chain processes afford diverse opportunities for catalysis, as illustrated with selected examples.

843 citations

Journal ArticleDOI
TL;DR: This Review surveys many of the recent seminal important developments which will determine the future of this dynamic emerging field of organic synthesis.
Abstract: The use of electricity instead of stoichiometric amounts of oxidizers or reducing agents in synthesis is very appealing for economic and ecological reasons, and represents a major driving force for research efforts in this area. To use electron transfer at the electrode for a successful transformation in organic synthesis, the intermediate radical (cation/anion) has to be stabilized. Its combination with other approaches in organic chemistry or concepts of contemporary synthesis allows the establishment of powerful synthetic methods. The aim in the 21st Century will be to use as little fossil carbon as possible and, for this reason, the use of renewable sources is becoming increasingly important. The direct conversion of renewables, which have previously mainly been incinerated, is of increasing interest. This Review surveys many of the recent seminal important developments which will determine the future of this dynamic emerging field.

633 citations

Journal ArticleDOI
TL;DR: This Account addresses the mechanistic inquiries about the characterization of the unsaturated acyl triazolium species and its kinetic profile under catalytically relevant conditions and provides explanations for the requirement and effect of the N-mesityl group in NHC catalysis based on detailed experimental data within given reactions or conditions.
Abstract: Catalytic reactions promoted by N-heterocyclic carbenes (NHCs) have exploded in popularity since 2004 when several reports described new fundamental reactions that extended beyond the long-studied generation of acyl anion equivalents. These new NHC-catalyzed reactions allow chemists to generate unique reactive species from otherwise inert starting materials, all under simple, mild reaction conditions and with exceptional selectivities. In analogy to transition metal catalysis, the use of NHCs has introduced a new set of elementary steps that operate via discrete reactive species, including acyl anion, homoenolate, and enolate equivalents, usually generated by oxidation state reorganization ("redox neutral" reactions). Nearly all NHC-catalyzed reactions offer operationally simple reactions, proceed at room temperature without the need for stringent exclusion of air, and do not generate reaction byproducts. Variation of the catalyst or reaction conditions can profoundly influence reaction outcomes, and researchers can tune the desired selectivities through careful choice of NHC precursor and base. The catalytically generated homoenolate and enolate equivalents are nucleophilic species. In contrast, the catalytically generated acyl azolium and α,β-unsaturated acyl azoliums are electrophilic cationic species with unique and unprecedented chemistry. For example, when generated catalytically, these species transformed an α-functionalized aldehyde to an ester under redox neutral conditions without coupling reagents or waste. In addition to providing new approaches to catalytic esterifications, acyl azoliums offer unique reactivities that chemists can exploit for selective reactions. This Account focuses on the discovery and mechanistic investigation of the catalytic generation of acyl azoliums and α,β-unsaturated acyl azoliums. These chemical species are fascinating, and their catalytic generation is an important development. Studies of their unusual chemistry, however, date back to the intense investigation of thiamine-dependent enzymatic processes in the 1960s. Acyl azoliums are remarkably reactive in acylation chemistry and are unusually chemoselective. These two properties have led to a new wave of reactions such as redox esterification reaction (1) and the catalytic kinetic resolution of challenging substrates (i.e., 3). Our group and others have also developed methods to generate and exploit α,β-unsaturated acyl azoliums, which have facilitated new C-C bond-forming annulations, including a catalytic, enantioselective variant of the Claisen rearrangement (2). From essentially one class of catalysts, the N-mesityl derived triazolium salts, researchers can easily prepare highly enantioenriched dihydropyranones and dihydropyridinones. Although this field is now one of the most explored areas of enantioselective C-C bond forming reactions, many mechanistic details remained unsolved and in dispute. In this Account, we address the mechanistic inquiries about the characterization of the unsaturated acyl triazolium species and its kinetic profile under catalytically relevant conditions. We also provide explanations for the requirement and effect of the N-mesityl group in NHC catalysis based on detailed experimental data within given specific reactions or conditions. We hope that our studies provide a roadmap for catalyst design/selection and new reaction discovery based on a fundamental understanding of the mechanistic course of NHC reactions.

529 citations