scispace - formally typeset
Search or ask a question
Author

Ramesh Katam

Bio: Ramesh Katam is an academic researcher from Florida A&M University. The author has contributed to research in topics: Ripening & Drought tolerance. The author has an hindex of 12, co-authored 30 publications receiving 1353 citations.
Topics: Ripening, Drought tolerance, Gene, Proteome, Rootstock

Papers
More filters
Book ChapterDOI
19 Apr 2016
TL;DR: Arabidopsis (rockcress) is a genus in the family Brassicaceae as mentioned in this paper, which includes nine species and eight subspecies, and has 10 chromosomes in diploid stage.
Abstract: Arabidopsis (rockcress) is a genus in the family Brassicaceae. Representatives of Brassicaceae family are small-flowering plants, some of them are important crops such as cabbage, cauliflower, radish, and canola. Arabidopsis genus includes nine species and eight subspecies. The subspecies delimitation is quite recent, and is based on morphological and molecular phylogenetics (Elizabeth 2000). Arabidopsis thalianacommonly known as thale cress, has 10 chromosomes in diploid stage and was the first plant to have its entire genome sequenced. Most of the species in Arabidopsis are indigenous to Europe and only two species are found in North America and Asia.

977 citations

Journal ArticleDOI
TL;DR: Investigation of changes in the berry proteome during ripening in muscadine grape cv.
Abstract: Grapes are among the widely cultivated fruit crops in the world. Grape berries like other nonclimacteric fruits undergo a complex set of dynamic, physical, physiological, and biochemical changes during ripening. Muscadine grapes are widely cultivated in the southern United States for fresh fruit and wine. To date, changes in the metabolites composition of muscadine grapes have been well documented; however, the molecular changes during berry development and ripening are not fully known. The aim of this study was to investigate changes in the berry proteome during ripening in muscadine grape cv. Noble. Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS was used to detect statistically significant changes in the berry proteome. A total of 674 proteins were detected, and 76 were differentially expressed across four time points in muscadine berry. Proteins obtained were further analyzed to provide information about its potential functions during ripening. Several proteins involved in abiotic and biotic stimuli and sucrose and hexose metabolism were upregulated during berry ripening. Quantitative real-time PCR analysis validated the protein expression results for nine proteins. Identification of vicilin-like antimicrobial peptides indicates additional disease tolerance proteins are present in muscadines for berry protection during ripening. The results provide new information for characterization and understanding muscadine berry proteome and grape ripening.

69 citations

Journal ArticleDOI
29 Aug 2019-PLOS ONE
TL;DR: The data indicates a high tolerance to heavy metals as indicated from the physiological and metabolites analysis and Molecular analysis indicated an 18-fold increase in the expression of the cannabidiolic acid synthase gene in plants grown on mine land soil.
Abstract: Industrial activities have a detrimental impact on the environment and health when high concentrations of pollutants are released. Phytoremediation is a natural method of utilizing plants to remove contaminants from the soil. The goal of this study was to investigate the ability of Cannabis sativa L. to sustainably grow and remediate abandoned coal mine land soils in Pennsylvania. In this study, six different varieties of industrial hemp (Fedora 17, Felina 32, Ferimon, Futura 75, Santhica 27, and USO 31) were grown on two different contaminated soil types and two commercial soils (Miracle-Gro Potting Mix and PRO-MIX HP Mycorrhizae High Porosity Grower Mix). Plants growing in all soil types were exposed to two environmental conditions (outside and in the greenhouse). Seed germination response and plant height indicated no significant differences among all hemp varieties grown in different soils, however on an average, the height of the plants grown in the greenhouse exceeded that of the plants grown outdoors. In addition, heavy metal analysis of Arsenic, Lead, Nickel, Mercury, and Cadmium was performed. The concentration of Nickel was 2.54 times greater in the leaves of hemp grown in mine land soil outdoors when compared to greenhouse conditions. No differences were found between expression of heavy metal transporter genes. Secondary metabolite analysis of floral buds from hemp grown in mine land soil displayed a significant increase in the total Cannabidiol content (2.16%, 2.58%) when compared to Miracle-Gro control soil (1.08%, 1.6%) for outdoors and in the greenhouse, respectively. Molecular analysis using qRT-PCR indicated an 18-fold increase in the expression of the cannabidiolic acid synthase gene in plants grown on mine land soil. The data indicates a high tolerance to heavy metals as indicated from the physiological and metabolites analysis.

46 citations

Journal ArticleDOI
TL;DR: Drought perturbs the invasion of the aflatoxin producing fungus and thus affects the quality and yield of peanut and more studies involving the effects of drought stress to determine the molecular changes will enhance the understanding of the key metabolic pathways involved in the combined stresses.

46 citations

Journal ArticleDOI
TL;DR: This research presents a novel probabilistic approach that allows us to assess the importance of knowing the carrier and removal status of canine coronavirus as a source of infection for other animals.

44 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
John P. Vogel1, David F. Garvin2, Todd C. Mockler2, Jeremy Schmutz, Daniel S. Rokhsar3, Michael W. Bevan4, Kerrie Barry5, Susan Lucas5, Miranda Harmon-Smith5, Kathleen Lail5, Hope Tice5, Jane Grimwood, Neil McKenzie4, Naxin Huo6, Yong Q. Gu6, Gerard R. Lazo6, Olin D. Anderson6, Frank M. You7, Ming-Cheng Luo7, Jan Dvorak7, Jonathan M. Wright4, Melanie Febrer4, Dominika Idziak8, Robert Hasterok8, Erika Lindquist5, Mei Wang5, Samuel E. Fox2, Henry D. Priest2, Sergei A. Filichkin2, Scott A. Givan2, Douglas W. Bryant2, Jeff H. Chang2, Haiyan Wu9, Wei Wu10, An-Ping Hsia10, Patrick S. Schnable9, Anantharaman Kalyanaraman11, Brad Barbazuk12, Todd P. Michael, Samuel P. Hazen13, Jennifer N. Bragg6, Debbie Laudencia-Chingcuanco6, Yiqun Weng14, Georg Haberer, Manuel Spannagl, Klaus F. X. Mayer, Thomas Rattei15, Therese Mitros3, Sang-Jik Lee16, Jocelyn K. C. Rose16, Lukas A. Mueller16, Thomas L. York16, Thomas Wicker17, Jan P. Buchmann17, Jaakko Tanskanen18, Alan H. Schulman18, Heidrun Gundlach, Michael W. Bevan4, Antonio Costa de Oliveira19, Luciano da C. Maia19, William R. Belknap6, Ning Jiang, Jinsheng Lai9, Liucun Zhu20, Jianxin Ma20, Cheng Sun21, Ellen J. Pritham21, Jérôme Salse, Florent Murat, Michael Abrouk, Rémy Bruggmann, Joachim Messing, Noah Fahlgren2, Christopher M. Sullivan2, James C. Carrington2, Elisabeth J. Chapman, Greg D. May22, Jixian Zhai23, Matthias Ganssmann23, Sai Guna Ranjan Gurazada23, Marcelo A German23, Blake C. Meyers23, Pamela J. Green23, Ludmila Tyler3, Jiajie Wu7, James A. Thomson6, Shan Chen13, Henrik Vibe Scheller24, Jesper Harholt25, Peter Ulvskov25, Jeffrey A. Kimbrel2, Laura E. Bartley24, Peijian Cao24, Ki-Hong Jung26, Manoj Sharma24, Miguel E. Vega-Sánchez24, Pamela C. Ronald24, Chris Dardick6, Stefanie De Bodt27, Wim Verelst27, Dirk Inzé27, Maren Heese28, Arp Schnittger28, Xiaohan Yang29, Udaya C. Kalluri29, Gerald A. Tuskan29, Zhihua Hua14, Richard D. Vierstra14, Yu Cui9, Shuhong Ouyang9, Qixin Sun9, Zhiyong Liu9, Alper Yilmaz30, Erich Grotewold30, Richard Sibout31, Kian Hématy31, Grégory Mouille31, Herman Höfte31, Todd P. Michael, Jérôme Pelloux32, Devin O'Connor3, James C. Schnable3, Scott C. Rowe3, Frank G. Harmon3, Cynthia L. Cass33, John C. Sedbrook33, Mary E. Byrne4, Sean Walsh4, Janet Higgins4, Pinghua Li16, Thomas P. Brutnell16, Turgay Unver34, Hikmet Budak34, Harry Belcram, Mathieu Charles, Boulos Chalhoub, Ivan Baxter35 
11 Feb 2010-Nature
TL;DR: The high-quality genome sequence will help Brachypodium reach its potential as an important model system for developing new energy and food crops and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat.
Abstract: Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.

1,603 citations

Journal ArticleDOI
TL;DR: In this article, the effect of heavy metals exposure to plants and role of GSH and PCs in heavy metal stress tolerance were reviewed and genetic manipulations of both GSH levels and PC levels were presented.

1,276 citations

01 Jan 2016
TL;DR: Methods Of Enzymatic Analysis is universally compatible behind any devices to read, and in the authors' digital library an online admission to it is set as public appropriately so you can download it instantly.
Abstract: Rather than enjoying a fine ebook as soon as a mug of coffee in the afternoon, instead they juggled when some harmful virus inside their computer. Methods Of Enzymatic Analysis is clear in our digital library an online admission to it is set as public appropriately you can download it instantly. Our digital library saves in complex countries, allowing you to get the most less latency period to download any of our books considering this one. Merely said, the Methods Of Enzymatic Analysis is universally compatible behind any devices to read.

1,136 citations

Journal ArticleDOI
TL;DR: The terpene synthases (TPSs) as mentioned in this paper are a family of enzymes responsible for the synthesis of various terpenes from two isomeric 5-carbon precursor molecules, leading to 5-carbinear isoprene, 10-carbon monoterpenes, 15-carbon sesquiterpenes and 20-carbenes.
Abstract: Summary Some plant terpenes such as sterols and carotenes are part of primary metabolism and found essentially in all plants. However, the majority of the terpenes found in plants are classified as ‘secondary’ compounds, those chemicals whose synthesis has evolved in plants as a result of selection for increased fitness via better adaptation to the local ecological niche of each species. Thousands of such terpenes have been found in the plant kingdom, but each species is capable of synthesizing only a small fraction of this total. In plants, a family of terpene synthases (TPSs) is responsible for the synthesis of the various terpene molecules from two isomeric 5-carbon precursor ‘building blocks’, leading to 5-carbon isoprene, 10-carbon monoterpenes, 15-carbon sesquiterpenes and 20-carbon diterpenes. The bryophyte Physcomitrella patens has a single TPS gene, copalyl synthase/kaurene synthase (CPS/KS), encoding a bifunctional enzyme producing ent-kaurene, which is a precursor of gibberellins. The genome of the lycophyte Selaginella moellendorffii contains 18 TPS genes, and the genomes of some model angiosperms and gymnosperms contain 40–152 TPS genes, not all of them functional and most of the functional ones having lost activity in either the CPS- or KS-type domains. TPS genes are generally divided into seven clades, with some plant lineages having a majority of their TPS genes in one or two clades, indicating lineage-specific expansion of specific types of genes. Evolutionary plasticity is evident in the TPS family, with closely related enzymes differing in their product profiles, subcellular localization, or the in planta substrates they use.

990 citations