Author

# Rameshwar D. Gupta

Bio: Rameshwar D. Gupta is an academic researcher from University of New Brunswick. The author has contributed to research in topics: Natural exponential family & Gamma distribution. The author has an hindex of 26, co-authored 67 publications receiving 5253 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this article, a three-parameter generalized exponential distribution (GED) was used for analysis of lifetime data, which is a particular case of the exponentiated Weibull distribution originally proposed by Mudholkar et al.

Abstract: Summary The three-parameter gamma and three-parameter Weibull distributions are commonly used for analysing any lifetime data or skewed data. Both distributions have several desirable properties, and nice physical interpretations. Because of the scale and shape parameters, both have quite a bit of flexibility for analysing different types of lifetime data. They have increasing as well as decreasing hazard rate depending on the shape parameter. Unfortunately both distributions also have certain drawbacks. This paper considers a three-parameter distribution which is a particular case of the exponentiated Weibull distribution originally proposed by Mudholkar, Srivastava & Freimer (1995) when the location parameter is not present. The study examines different properties of this model and observes that this family has some interesting features which are quite similar to those of the gamma family and the Weibull family, and certain distinct properties also. It appears this model can be used as an alternative to the gamma model or the Weibull model in many situations. One dataset is provided where the three-parameter generalized exponential distribution fits better than the three-parameter Weibull distribution or the three-parameter gamma distribution.

1,084 citations

••

TL;DR: In this paper, the authors studied the properties of a new family of distributions known as the Exponentiated Exponential (exponential) distribution, discussed in Gupta, Gupta, and Gupta (1998).

Abstract: Summary In this article we study some properties of a new family of distributions, namely Exponentiated Exponentialdistribution, discussed in Gupta, Gupta, and Gupta (1998). The Exponentiated Exponential family has two parameters (scale and shape) similar to a Weibull or a gamma family. It is observed that many properties of this new family are quite similar to those of a Weibull or a gamma family, therefore this distribution can be used as a possible alternative to a Weibull or a gamma distribution. We present two reall ife data sets, where it is observed that in one data set exponentiated exponential distribution has a better fit compared to Weibull or gamma distribution and in the other data set Weibull has a better fit than exponentiated exponential or gamma distribution. Some numerical experiments are performed to see how the maximum likelihood estimators and their asymptotic results work for finite sample sizes.

684 citations

••

TL;DR: In this paper, the authors proposed to model failure time data by F*(f) = [F(t)]θ where F(t) is the baseline distribution function and θ is a positive real number.

Abstract: The proportional hazards model has been extensively used in the literature to model failure time data. In this paper we propose to model failure time data by F*(f) = [F(t)]θ where F(t) is the baseline distribution function and θ is a positive real number. This model gives rise to monotonic as well as non-monotonic failure rates even though the baseline failure rate is monotonic. The monotonicity of the failure rates are studied, in general, and some order relations are examined. Some examples including exponentiated Weibull, exponential, gamma and Pareto distributions are investigated in detail.

670 citations

••

TL;DR: In this article, the authors considered the maximum likelihood estimation of the different parameters of a generalized exponential distribution and discussed some of the testing of hypothesis problems, and compared their performances through numerical simulations.

Abstract: Recently a new distribution, named as generalized exponential distribution has been introduced and studied quite extensively by the authors. Generalized exponential distribution can be used as an alternative to gamma or Weibull distribution in many situations. In a companion paper, the authors considered the maximum likelihood estimation of the different parameters of a generalized exponential distribution and discussed some of the testing of hypothesis problems. In this paper we mainly consider five other estimation procedures and compare their performances through numerical simulations.

320 citations

••

TL;DR: In this paper, the authors proposed a generalized exponential distribution for analyzing bathtub failure data, which has a right skewed unimodal density function and monotone hazard function similar to the density functions and hazard functions of the gamma and Weibull distributions.

Abstract: Mudholkar and Srivastava [1993. Exponentiated Weibull family for analyzing bathtub failure data. IEEE Trans. Reliability 42, 299–302] introduced three-parameter exponentiated Weibull distribution. Two-parameter exponentiated exponential or generalized exponential distribution is a particular member of the exponentiated Weibull distribution. Generalized exponential distribution has a right skewed unimodal density function and monotone hazard function similar to the density functions and hazard functions of the gamma and Weibull distributions. It is observed that it can be used quite effectively to analyze lifetime data in place of gamma, Weibull and log-normal distributions. The genesis of this model, several properties, different estimation procedures and their properties, estimation of the stress-strength parameter, closeness of this distribution to some of the well-known distribution functions are discussed in this article.

284 citations

##### Cited by

More filters

••

TL;DR: For real or complex matrices with elements from a standard normal distribution, the condition number should be given given a random matrix, and as mentioned in this paper showed that condition number is not the right condition number for any real matrix.

Abstract: Given a random matrix, what condition number should be expected? This paper presents a proof that for real or complex $n \times n$ matrices with elements from a standard normal distribution, the ex...

1,478 citations

01 Jan 2011

TL;DR: In this paper, a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions is presented.

Abstract: This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol’s method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent. Mathematical modeling of complex systems often requires sensitivity analysis to determine how an output variable of interest is influenced by individual or subsets of input variables. A traditional local sensitivity analysis entails gradients or derivatives, often invoked in design optimization, describing changes in the model response due to the local variation of input. Depending on the model output, obtaining gradients or derivatives, if they exist, can be simple or difficult. In contrast, a global sensitivity analysis (GSA), increasingly becoming mainstream, characterizes how the global variation of input, due to its uncertainty, impacts the overall uncertain behavior of the model. In other words, GSA constitutes the study of how the output uncertainty from a mathematical model is divvied up, qualitatively or quantitatively, to distinct sources of input variation in the model [1].

1,296 citations

••

29 Sep 2014TL;DR: In this article, the authors present a concise review of developments on various continuous multivariate distributions and present some basic definitions and notations, and present several important continuous multi-dimensional distributions and their significant properties and characteristics.

Abstract: In this article, we present a concise review of developments on various continuous multivariate distributions. We first present some basic definitions and notations. Then, we present several important continuous multivariate distributions and list their significant properties and characteristics.
Keywords:
generating function;
moments;
conditional distribution;
truncated distribution;
regression;
bivariate normal;
multivariate normal;
multivariate exponential;
multivariate gamma;
dirichlet;
inverted dirichlet;
liouville;
multivariate logistic;
multivariate pareto;
multivariate extreme value;
multivariate t;
wishart translated systems;
multivariate exponential families

1,106 citations

••

TL;DR: In this article, a three-parameter generalized exponential distribution (GED) was used for analysis of lifetime data, which is a particular case of the exponentiated Weibull distribution originally proposed by Mudholkar et al.

Abstract: Summary The three-parameter gamma and three-parameter Weibull distributions are commonly used for analysing any lifetime data or skewed data. Both distributions have several desirable properties, and nice physical interpretations. Because of the scale and shape parameters, both have quite a bit of flexibility for analysing different types of lifetime data. They have increasing as well as decreasing hazard rate depending on the shape parameter. Unfortunately both distributions also have certain drawbacks. This paper considers a three-parameter distribution which is a particular case of the exponentiated Weibull distribution originally proposed by Mudholkar, Srivastava & Freimer (1995) when the location parameter is not present. The study examines different properties of this model and observes that this family has some interesting features which are quite similar to those of the gamma family and the Weibull family, and certain distinct properties also. It appears this model can be used as an alternative to the gamma model or the Weibull model in many situations. One dataset is provided where the three-parameter generalized exponential distribution fits better than the three-parameter Weibull distribution or the three-parameter gamma distribution.

1,084 citations

•

TL;DR: Alho and Spencer as discussed by the authors published a book on statistical and mathematical demography, focusing on mature population models, the particular focus of the new author (see, e.g., Caswell 2000).

Abstract: Here are two books on a topic new to Technometrics: statistical and mathematical demography. The first author of Applied Mathematical Demography wrote the first two editions of this book alone. The second edition was published in 1985. Professor Keyfritz noted in the Preface (p. vii) that at age 90 he had no interest in doing another edition; however, the publisher encouraged him to find a coauthor. The result is an additional focus for the book in the world of biology that makes it much more relevant for the sciences. The book is now part of the publisher’s series on Statistics for Biology and Health. Much of it, of course, focuses on the many aspects of human populations. The new material focuses on mature population models, the particular focus of the new author (see, e.g., Caswell 2000). As one might expect from a book that was originally written in the 1970s, it does not include a lot of information on statistical computing. The new book by Alho and Spencer is focused on putting a better emphasis on statistics in the discipline of demography (Preface, p. vii). It is part of the publisher’s Series in Statistics. The authors are both statisticians, so the focus is on statistics as used for demographic problems. The authors are targeting human applications, so their perspective on science does not extend any further than epidemiology. The book actually strikes a good balance between statistical tools and demographic applications. The authors use the first two chapters to teach statisticians about the concepts of demography. The next four chapters are very similar to the statistics content found in introductory books on survival analysis, such as the recent book by Kleinbaum and Klein (2005), reported by Ziegel (2006). The next three chapters are focused on various aspects of forecasting demographic rates. The book concludes with chapters focusing on three areas of applications: errors in census numbers, financial applications, and small-area estimates.

710 citations