scispace - formally typeset
Search or ask a question
Author

Ramiro Aguilar

Bio: Ramiro Aguilar is an academic researcher from National University of Cordoba. The author has contributed to research in topics: Pollination & Habitat fragmentation. The author has an hindex of 18, co-authored 47 publications receiving 3326 citations. Previous affiliations of Ramiro Aguilar include National Scientific and Technical Research Council & University of North Carolina at Chapel Hill.


Papers
More filters
Journal ArticleDOI
TL;DR: A highly significant correlation between the effect sizes of fragmentation on pollination and reproductive success suggests that the most proximate cause of reproductive impairment in fragmented habitats may be pollination limitation.
Abstract: The loss and fragmentation of natural habitats by human activities are pervasive phenomena in terrestrial ecosystems across the Earth and the main driving forces behind current biodiversity loss. Animal-mediated pollination is a key process for the sexual reproduction of most extant flowering plants, and the one most consistently studied in the context of habitat fragmentation. By means of a meta-analysis we quantitatively reviewed the results from independent fragmentation studies throughout the last two decades, with the aim of testing whether pollination and reproduction of plant species may be differentially susceptible to habitat fragmentation depending on certain reproductive traits that typify the relationship with and the degree of dependence on their pollinators. We found an overall large and negative effect of fragmentation on pollination and on plant reproduction. The compatibility system of plants, which reflects the degree of dependence on pollinator mutualism, was the only reproductive trait that explained the differences among the species' effect sizes. Furthermore, a highly significant correlation between the effect sizes of fragmentation on pollination and reproductive success suggests that the most proximate cause of reproductive impairment in fragmented habitats may be pollination limitation. We discuss the conservation implications of these findings and give some suggestions for future research into this area.

908 citations

Journal ArticleDOI
01 Aug 2009-Ecology
TL;DR: Both bee abundance and species richness were significantly, negatively affected by disturbance, however, the magnitude of the effects was not large and the only disturbance type showing a significant negative effect, habitat loss and fragmentation, was statistically significant only in systems where very little natural habitat remains.
Abstract: Pollinators may be declining globally, a matter of concern because animal pollination is required by most of the world's plant species, including many crop plants. Human land use and the loss of native habitats is thought to be an important driver of decline for wild, native pollinators, yet the findings of published studies on this topic have never been quantitatively synthesized. Here we use meta-analysis to synthesize the literature on how bees, the most important group of pollinators, are affected by human disturbances such as habitat loss, grazing, logging, and agriculture. We obtained 130 effect sizes from 54 published studies recording bee abundance and/or species richness as a function of human disturbance. Both bee abundance and species richness were significantly, negatively affected by disturbance. However, the magnitude of the effects was not large. Furthermore, the only disturbance type showing a significant negative effect, habitat loss and fragmentation, was statistically significant only in systems where very little natural habitat remains. Therefore, it would be premature to draw conclusions about habitat loss having caused global pollinator decline without first assessing the extent to which the existing studies represent the status of global ecosystems. Future pollinator declines seem likely given forecasts of increasing land-use change.

847 citations

Journal ArticleDOI
TL;DR: It is concluded that current conservation efforts in fragmented habitats should be focused on common or recently rare species and mainly outcrossing species and outline important issues that need to be addressed in future research on this area.
Abstract: Conservation of genetic diversity, one of the three main forms of biodiversity, is a fundamental concern in conservation biology as it provides the raw material for evolutionary change and thus the potential to adapt to changing environments. By means of meta-analyses, we tested the generality of the hypotheses that habitat fragmentation affects genetic diversity of plant populations and that certain life history and ecological traits of plants can determine differential susceptibility to genetic erosion in fragmented habitats. Additionally, we assessed whether certain methodological approaches used by authors influence the ability to detect fragmentation effects on plant genetic diversity. We found overall large and negative effects of fragmentation on genetic diversity and outcrossing rates but no effects on inbreeding coefficients. Significant increases in inbreeding coefficient in fragmented habitats were only observed in studies analyzing progenies. The mating system and the rarity status of plants explained the highest proportion of variation in the effect sizes among species. The age of the fragment was also decisive in explaining variability among effect sizes: the larger the number of generations elapsed in fragmentation conditions, the larger the negative magnitude of effect sizes on heterozygosity. Our results also suggest that fragmentation is shifting mating patterns towards increased selfing. We conclude that current conservation efforts in fragmented habitats should be focused on common or recently rare species and mainly outcrossing species and outline important issues that need to be addressed in future research on this area.

688 citations

Journal ArticleDOI
TL;DR: The first systematic review of pollination syndromes that quantitatively tests whether the most effective pollinators for a species can be inferred from suites of floral traits for 417 plant species supports the syndrome concept.
Abstract: The idea of pollination syndromes has been largely discussed but no formal quantitative evaluation has yet been conducted across angiosperms. We present the first systematic review of pollination syndromes that quantitatively tests whether the most effective pollinators for a species can be inferred from suites of floral traits for 417 plant species. Our results support the syndrome concept, indicating that convergent floral evolution is driven by adaptation to the most effective pollinator group. The predictability of pollination syndromes is greater in pollinator-dependent species and in plants from tropical regions. Many plant species also have secondary pollinators that generally correspond to the ancestral pollinators documented in evolutionary studies. We discuss the utility and limitations of pollination syndromes and the role of secondary pollinators to understand floral ecology and evolution.

356 citations

Journal ArticleDOI
TL;DR: Evidence that specialization of plant–pollinator interactions is asymmetric to observations that generalist pollinators are less affected by habitat fragmentation is linked to evidence that effects do not differ between plants with different degrees of specialization.
Abstract: 1Although reproductive success of pollination specialist plants has been predicted to be more sensitive to habitat fragmentation than that of generalist plants, recent results indicate that effects do not differ between plants with different degrees of specialization. 2We provide an explanation for such unexpected results by linking evidence that specialization of plant–pollinator interactions is asymmetric to observations that generalist pollinators are less affected by habitat fragmentation. 3Plant specialization cannot therefore be considered in isolation from the degree of specialization of the mutualist partners. Evaluation of both sides of the mutualistic interaction will yield insights into the mechanisms behind species’ responses to habitat fragmentation.

163 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: The nature and extent of reported declines, and the potential drivers of pollinator loss are described, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them are reviewed.
Abstract: Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare.

4,608 citations

Journal ArticleDOI
01 Mar 2011-Oikos
TL;DR: The global number and proportion of animal pollinated angiosperms is estimated as 308 006, which is 87.5% of the estimated species-level diversity of fl owering plants.
Abstract: It is clear that the majority of fl owering plants are pollinated by insects and other animals, with a minority utilising abiotic pollen vectors, mainly wind. However there is no accurate published calculation of the proportion of the ca 352 000 species of angiosperms that interact with pollinators. Widely cited fi gures range from 67% to 96% but these have not been based on fi rm data. We estimated the number and proportion of fl owering plants that are pollinated by animals using published and unpublished community-level surveys of plant pollination systems that recorded whether each species present was pollinated by animals or wind. Th e proportion of animal-pollinated species rises from a mean of 78% in temperate-zone communities to 94% in tropical communities. By correcting for the latitudinal diversity trend in fl owering plants, we estimate the global number and proportion of animal pollinated angiosperms as 308 006, which is 87.5% of the estimated species-level diversity of fl owering plants. Given current concerns about the decline in pollinators and the possible resulting impacts on both natural communities and agricultural crops, such estimates are vital to both ecologists and policy makers. Further research is required to assess in detail the absolute dependency of these plants on their pollinators, and how this varies with latitude and community type, but there is no doubt that plant – pollinator interactions play a signifi cant role in maintaining the functional integrity of most terrestrial ecosystems. Plant – pollinator relationships may be one of the most ecologically important classes of animal – plant interaction: without pollinators, many plants could not set seed and reproduce; and without plants to provide pollen, nectar and other rewards, many animal populations would decline, with consequent knock-on eff ects for other species (Kearns et al.

2,448 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a global meta-analysis of 199 articles reporting 1041 field studies that in total describe the impacts of 135 alien plant taxa on resident species, communities and ecosystems.
Abstract: Biological invasions cause ecological and economic impacts across the globe. However, it is unclear whether there are strong patterns in terms of their major effects, how the vulnerability of different ecosystems varies and which ecosystem services are at greatest risk. We present a global meta-analysis of 199 articles reporting 1041 field studies that in total describe the impacts of 135 alien plant taxa on resident species, communities and ecosystems. Across studies, alien plants had a significant effect in 11 of 24 different types of impact assessed. The magnitude and direction of the impact varied both within and between different types of impact. On average, abundance and diversity of the resident species decreased in invaded sites, whereas primary production and several ecosystem processes were enhanced. While alien N-fixing species had greater impacts on N-cycling variables, they did not consistently affect other impact types. The magnitude of the impacts was not significantly different between island and mainland ecosystems. Overall, alien species impacts are heterogeneous and not unidirectional even within particular impact types. Our analysis also reveals that by the time changes in nutrient cycling are detected, major impacts on plant species and communities are likely to have already occurred.

2,293 citations

Journal ArticleDOI
TL;DR: It is concluded that in order to reliably predict the effects of GEC on community and ecosystem processes, the greatest single challenge will be to determine how biotic and abiotic context alters the direction and magnitude of G EC effects on biotic interactions.
Abstract: The main drivers of global environmental change (CO2 enrichment, nitrogen deposition, climate, biotic invasions and land use) cause extinctions and alter species distributions, and recent evidence shows that they exert pervasive impacts on various antagonistic and mutualistic interactions among species. In this review, we synthesize data from 688 published studies to show that these drivers often alter competitive interactions among plants and animals, exert multitrophic effects on the decomposer food web, increase intensity of pathogen infection, weaken mutualisms involving plants, and enhance herbivory while having variable effects on predation. A recurrent finding is that there is substantial variability among studies in both the magnitude and direction of effects of any given GEC driver on any given type of biotic interaction. Further, we show that higher order effects among multiple drivers acting simultaneously create challenges in predicting future responses to global environmental change, and that extrapolating these complex impacts across entire networks of species interactions yields unanticipated effects on ecosystems. Finally, we conclude that in order to reliably predict the effects of GEC on community and ecosystem processes, the greatest single challenge will be to determine how biotic and abiotic context alters the direction and magnitude of GEC effects on biotic interactions.

2,070 citations