scispace - formally typeset
Search or ask a question
Author

Ramsha Imran

Bio: Ramsha Imran is an academic researcher from Institute of Space Technology. The author has contributed to research in topics: Medicine & Digital image correlation. The author has an hindex of 4, co-authored 5 publications receiving 47 citations. Previous affiliations of Ramsha Imran include University of Management and Technology, Lahore.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the significance of natural fibers, their composites, and the main factors influencing these materials for various applications (automotive industry, for instance) are discussed.
Abstract: The utilization of synthetic materials stimulates environmental concerns, and researchers worldwide are effectively reacting to environmental concerns by transitioning towards biodegradable and sustainable materials. Natural fibers like jute and sisal have been being utilized for ages in several applications, such as ropes, building materials, particle boards, etc. The absence of essential information in preparing the natural-fiber-reinforced materials is still a challenge for future applications. Chemical treatments and surface modifications can improve the quality of the natural fibers. Natural-fiber-based composites are a potential candidate for many lightweight engineering applications with significant mechanical properties. In the view of the progressive literature reported in the field, this work aims to present the significance of natural fibers, their composites, and the main factors influencing these materials for various applications (automotive industry, for instance). Secondly, we aim to address different surface modifications and chemical treatments on natural fibers and finally provide an overview of natural fiber reinforced polymer composites’ potential applications.

58 citations

Journal ArticleDOI
TL;DR: In this paper, a literature review on natural fibers revealed that they offer excellent and compatible mechanical properties and they could be an alternative to pure glass fiber reinforced composites, with comparable and even higher load withstanding capabilities.
Abstract: The sports industry is an ever-growing sector worldwide. With technological advancements in information technologies, the sports industry has merged with the entertainment industry, reaching and influencing billions of people globally. However, to ensure and advance the safety, security, and sustainability of the sports industry, technological innovations are always needed in several manufacturing and materials processes to achieve cost-effectiveness, efficiency, durability, reusability, and recyclability of products used in this industry. For example, 90% of the field hockey equipment produced in the world comes from Sialkot, Pakistan. Most export quality field hockey equipment is currently produced via reinforcement of glass/carbon fibers in epoxy resin. The current study aimed to introduce new materials for field hockey equipment to reduce manufacturing costs and the environmental impact of synthetic materials, without comprising the quality of the final product. Our literature review on natural fibers revealed that they offer excellent and compatible mechanical properties. Based on extensive experimental studies, we concluded that banana fiber reinforced hybrid composites could be an alternative to pure glass fiber reinforced composites, with comparable and even higher load withstanding capabilities. Using banana fiber reinforced hybrid composites for the fabrication of hockey products would cut costs and lower the environmental impact stemming from the uses of biodegradable organic materials. It will also lead to the development of a domestic economy based on domestic resources.

48 citations

Journal ArticleDOI
TL;DR: In this article, an experimental campaign was carried out for determination of opening stresses of railway steels (25CrMo4 and 30NiCrMoV12) subjected to low cycle fatigue (LCF) using digital image correlation (DIC) technique.

15 citations

Journal ArticleDOI
TL;DR: In this article, a two-stage turbo-compressor with an expander was used to evaluate the performance of a fuel cell stack (FCS) in modern hydrogen vehicles.

13 citations

Journal ArticleDOI
TL;DR: In this article , a review of computational modeling techniques employed for the design, manufacturing, and performance analysis of AM porous scaffolds is presented, and the authors conclude that there is an unmet need to develop accurate, fast, and inexpensive computational modeling for AM of Mg-based implants.

9 citations


Cited by
More filters
Journal ArticleDOI
01 Sep 2021
TL;DR: In this article, the authors highlighted some of the important breakthroughs associated with the NFRPCs in terms of sustainability, eco-friendliness, and economic perspective, and elucidated the significance of using numerical models for NFRMCs.
Abstract: In the contemporary world, natural fibers reinforced polymer composite (NFRPC) materials are of great interest owing to their eco-friendly nature, lightweight, life-cycle superiority, biodegradability, low cost, noble mechanical properties. NFRPCs are widely applied in various engineering applications and this research field is continuously developing. However, the researchers are facing numerous challenges regarding the developments and applications of NFPRCs due to the inherent characteristics of natural fibers (NFs). These challenges include quality of the fiber, thermal stability, water absorption capacity, and incompatibility with the polymer matrices. Ecological and economic concerns are animating new research in the field of NFRPCs. Furthermore, considerable research is carried out to improve the performance of NFRPCs in recent years. This review highlights some of the important breakthroughs associated with the NFRPCs in terms of sustainability, eco-friendliness, and economic perspective. It also includes hybridization of NFs with synthetic fibers which is a highly effective way of improving the mechanical properties of NFRPCs along with some chemical treatment procedures. This review also elucidates the significance of using numerical models for NFRPCs. Finally, conclusions and recommendations are drawn to assist the researchers with future research directions.

121 citations

Journal ArticleDOI
TL;DR: In this paper , a review of biopolymer-based food packaging materials and their composites, their biodegradation mechanisms, and the effect of nano-additives on the food packaging properties are presented.

73 citations

Journal ArticleDOI
TL;DR: A comparative review of additive manufacturing processes for polymer composites and their applications is presented in this article, which aims to provide engineers and scientists with an updated understanding of the underlying issues, barriers, limitations, and opportunities.
Abstract: Polymer nanocomposites have attracted increasing interest in research and development with several current and potential industrial applications due to their wide margin of superiority over conventional materials. Polymer composites provide a higher strength-to-weight ratio, easily customizable product properties, flexible manufacturing processes, high resistance to corrosion or erosion, and lower cost. The recent progress in additive manufacturing (AM) methods has paved the way for even a broader range of flexibilities in design and materials in several industrial sectors, including aerospace, biomedical, construction, electronics, telecommunication, mechanical, and defense. However, some hindrances remain in the synthesis of polymer composites and their fabrication through AM technologies. A comparative review of AM processes for polymer composites and their applications is presented in this study. This study aims to provide engineers and scientists with an updated understanding of the underlying issues, barriers, limitations, and opportunities. It will also help the reader to systematically reveal the research problems and future directions related to materials synthesis and AM processes.

69 citations

Journal ArticleDOI
TL;DR: An overview of the latest knowledge of different natural and synthetic-based biodegradable polymers and their fiber-reinforced composites is presented in this paper , which discusses different degradation mechanisms of biopolymer-based composites as well as their sustainability aspects.
Abstract: Advancements in polymer science and engineering have helped the scientific community to shift its attention towards the use of environmentally benign materials for reducing the environmental impact of conventional synthetic plastics. Biopolymers are environmentally benign, chemically versatile, sustainable, biocompatible, biodegradable, inherently functional, and ecofriendly materials that exhibit tremendous potential for a wide range of applications including food, electronics, agriculture, textile, biomedical, and cosmetics. This review also inspires the researchers toward more consumption of biopolymer-based composite materials as an alternative to synthetic composite materials. Herein, an overview of the latest knowledge of different natural- and synthetic-based biodegradable polymers and their fiber-reinforced composites is presented. The review discusses different degradation mechanisms of biopolymer-based composites as well as their sustainability aspects. This review also elucidates current challenges, future opportunities, and emerging applications of biopolymeric sustainable composites in numerous engineering fields. Finally, this review proposes biopolymeric sustainable materials as a propitious solution to the contemporary environmental crisis. • Use of biopolymers has emerged as a new paradigm of the ecological conservation. • Biopolymeric composites are easily degraded under the possible source of degraded environment. • Biopolymers have found their applications in biomedical, food, electronics, cosmetics and other emerging fields. • Further understanding on their mode of action through this comprehensive review will imparts knowledge.

64 citations