scispace - formally typeset
Search or ask a question
Author

Ran Liu

Other affiliations: Fudan University
Bio: Ran Liu is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Computer science & Autoencoder. The author has an hindex of 4, co-authored 10 publications receiving 219 citations. Previous affiliations of Ran Liu include Fudan University.

Papers
More filters
Journal ArticleDOI
17 Jan 2019-Nature
TL;DR: Evidence of a new type of quantum Hall effect, based on Weyl orbits in nanostructures of the three-dimensional topological semimetal Cd3As2, is reported, which finds that the quantum Hall transport is strongly modulated by the sample thickness.
Abstract: Discovered decades ago, the quantum Hall effect remains one of the most studied phenomena in condensed matter physics and is relevant for research areas such as topological phases, strong electron correlations and quantum computing1-5. The quantized electron transport that is characteristic of the quantum Hall effect typically originates from chiral edge states-ballistic conducting channels that emerge when two-dimensional electron systems are subjected to large magnetic fields2. However, whether the quantum Hall effect can be extended to higher dimensions without simply stacking two-dimensional systems is unknown. Here we report evidence of a new type of quantum Hall effect, based on Weyl orbits in nanostructures of the three-dimensional topological semimetal Cd3As2. The Weyl orbits consist of Fermi arcs (open arc-like surface states) on opposite surfaces of the sample connected by one-dimensional chiral Landau levels along the magnetic field through the bulk6,7. This transport through the bulk results in an additional contribution (compared to stacked two-dimensional systems and which depends on the sample thickness) to the quantum phase of the Weyl orbit. Consequently, chiral states can emerge even in the bulk. To measure these quantum phase shifts and search for the associated chiral modes in the bulk, we conduct transport experiments using wedge-shaped Cd3As2 nanostructures with variable thickness. We find that the quantum Hall transport is strongly modulated by the sample thickness. The dependence of the Landau levels on the magnitude and direction of the magnetic field and on the sample thickness agrees with theoretical predictions based on the modified Lifshitz-Onsager relation for the Weyl orbits. Nanostructures of topological semimetals thus provide a way of exploring quantum Hall physics in three-dimensional materials with enhanced tunability.

201 citations

Journal ArticleDOI
TL;DR: The four-terminal transport measurement identifies a pronounced proximity-induced pairing gap (gap size comparable to Nb) on the surfaces, which exhibits a flat conductance plateau in differential conductance spectra, consistent with the theoretical simulations.
Abstract: Cd3As2 is a three-dimensional Dirac semimetal with separated Dirac points in momentum space. In spite of extensive transport and spectroscopic studies on its exotic properties, the evidence of superconductivity in its surface states remains elusive. Here, we report the observation of proximity-induced surface superconductivity in Nb/Cd3As2 hybrid structures. Our four-terminal transport measurement identifies a pronounced proximity-induced pairing gap (gap size comparable to Nb) on the surfaces, which exhibits a flat conductance plateau in differential conductance spectra, consistent with our theoretical simulations. The surface supercurrent from Nb/Cd3As2/Nb junctions is also achieved with a Fraunhofer/SQUID-like pattern under out-of-plane/in-plane magnetic fields, respectively. The resultant mapping shows a predominant distribution on the top and bottom surfaces as the bulk carriers are depleted, which can be regarded as a higher dimensional analog of edge supercurrent in two-dimensional quantum spin Hall insulators. Our study provides the evidence of surface superconductivity in Dirac semimetals.

54 citations

Journal ArticleDOI
14 Jun 2018-ACS Nano
TL;DR: In this paper, strong proximity-induced superconductivity in type-II Weyl semimetal WTe2, in a van der Waals hybrid structure obtained by mechanically transferring NbSe2 onto various thicknesses of Wte2, was reported.
Abstract: The search for proximity-induced superconductivity in topological materials has generated widespread interest in the condensed matter physics community. The superconducting states inheriting nontrivial topology at interfaces are expected to exhibit exotic phenomena such as topological superconductivity and Majorana zero modes, which hold promise for applications in quantum computation. However, a practical realization of such hybrid structures based on topological semimetals and superconductors has hitherto been limited. Here, we report the strong proximity-induced superconductivity in type-II Weyl semimetal WTe2, in a van der Waals hybrid structure obtained by mechanically transferring NbSe2 onto various thicknesses of WTe2. When the WTe2 thickness (tWTe2) reaches 21 nm, the superconducting transition occurs around the critical temperature (Tc) of NbSe2 with a gap amplitude (Δp) of 0.38 meV and an unexpected ultralong proximity length (lp) up to 7 μm. With the thicker 42 nm WTe2 layer, however, the proxi...

29 citations

Posted ContentDOI
23 Jul 2021-bioRxiv
TL;DR: In this paper, an unsupervised approach for learning disentangled representations of neural activity called Swap-VAE is proposed, which combines a generative modeling framework with an instance-specific alignment loss that tries to maximize the representational similarity between transformed views of the input (brain state).
Abstract: Meaningful and simplified representations of neural activity can yield insights into how and what information is being processed within a neural circuit. However, without labels, finding representations that reveal the link between the brain and behavior can be challenging. Here, we introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE. Our approach combines a generative modeling framework with an instance-specific alignment loss that tries to maximize the representational similarity between transformed views of the input (brain state). These transformed (or augmented) views are created by dropping out neurons and jittering samples in time, which intuitively should lead the network to a representation that maintains both temporal consistency and invariance to the specific neurons used to represent the neural state. Through evaluations on both synthetic data and neural recordings from hundreds of neurons in different primate brains, we show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.

14 citations

Posted Content
TL;DR: Mine Your Own vieW (MYOW) as discussed by the authors is a self-supervised learning approach that looks within the dataset to define diverse targets for prediction by mining views, finding samples that are neighbors in the representation space of the network and then predicting, from one sample's latent representation, the representation of a nearby sample.
Abstract: State-of-the-art methods for self-supervised learning (SSL) build representations by maximizing the similarity between different transformed "views" of a sample. Without sufficient diversity in the transformations used to create views, however, it can be difficult to overcome nuisance variables in the data and build rich representations. This motivates the use of the dataset itself to find similar, yet distinct, samples to serve as views for one another. In this paper, we introduce Mine Your Own vieW (MYOW), a new approach for self-supervised learning that looks within the dataset to define diverse targets for prediction. The idea behind our approach is to actively mine views, finding samples that are neighbors in the representation space of the network, and then predict, from one sample's latent representation, the representation of a nearby sample. After showing the promise of MYOW on benchmarks used in computer vision, we highlight the power of this idea in a novel application in neuroscience where SSL has yet to be applied. When tested on multi-unit neural recordings, we find that MYOW outperforms other self-supervised approaches in all examples (in some cases by more than 10%), and often surpasses the supervised baseline. With MYOW, we show that it is possible to harness the diversity of the data to build rich views and leverage self-supervision in new domains where augmentations are limited or unknown.

10 citations


Cited by
More filters
Journal Article
TL;DR: High-resolution spectroscopic imaging techniques show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states, providing strong evidence for the formation of a topological phase and edge-bound Majorana fermions in atomic chains.
Abstract: A possible sighting of Majorana states Nearly 80 years ago, the Italian physicist Ettore Majorana proposed the existence of an unusual type of particle that is its own antiparticle, the so-called Majorana fermion. The search for a free Majorana fermion has so far been unsuccessful, but bound Majorana-like collective excitations may exist in certain exotic superconductors. Nadj-Perge et al. created such a topological superconductor by depositing iron atoms onto the surface of superconducting lead, forming atomic chains (see the Perspective by Lee). They then used a scanning tunneling microscope to observe enhanced conductance at the ends of these chains at zero energy, where theory predicts Majorana states should appear. Science, this issue p. 602; see also p. 547 Scanning tunneling microscopy is used to observe signatures of Majorana states at the ends of iron atom chains. [Also see Perspective by Lee] Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains.

877 citations

Journal Article
TL;DR: In this article, the predicted half-integer quantum Hall effect was observed using the topological insulator BiSbTeSe2, which exhibits topological surface states at room temperature, with each surface contributing a half quantum of Hall conductance.
Abstract: Experimentalists have observed the predicted half-integer quantum Hall effect using the topological insulator BiSbTeSe2, which exhibits topological surface states at room temperature, with each surface contributing a half quantum of Hall conductance.

235 citations

Journal Article
TL;DR: The bulk-boundary correspondence is directly demonstrated and the topologically nontrivial nature of the Weyl semimetal state in TaP is established, by resolving the net number of chiral edge modes on a closed path that encloses the Wey node.
Abstract: Photoemission established tantalum phosphide as a Weyl semimetal, which hosts exotic Weyl fermion quasiparticles and Fermi arcs. Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we find that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal’s surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission.

190 citations

Journal Article
TL;DR: By performing angle-resolved photoemission spectroscopy, a pair of 3D Dirac fermions in Cd3As2 are directly observed, proving that it is a model 3D TDS and by in situ doping it is able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena.
Abstract: Three-dimensional (3D) topological Dirac semimetals (TDSs) are a recently proposed state of quantum matter that have attracted increasing attention in physics and materials science. A 3D TDS is not only a bulk analogue of graphene; it also exhibits non-trivial topology in its electronic structure that shares similarities with topological insulators. Moreover, a TDS can potentially be driven into other exotic phases (such as Weyl semimetals, axion insulators and topological superconductors), making it a unique parent compound for the study of these states and the phase transitions between them. Here, by performing angle-resolved photoemission spectroscopy, we directly observe a pair of 3D Dirac fermions in Cd3As2, proving that it is a model 3D TDS. Compared with other 3D TDSs, for example, β-cristobalite BiO2 (ref. 3) and Na3Bi (refs 4, 5), Cd3As2 is stable and has much higher Fermi velocities. Furthermore, by in situ doping we have been able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena.

166 citations