scispace - formally typeset
Search or ask a question
Author

Randall B. Lauffer

Bio: Randall B. Lauffer is an academic researcher from Harvard University. The author has contributed to research in topics: Human serum albumin & Nuclear magnetic resonance spectroscopy. The author has an hindex of 31, co-authored 62 publications receiving 9939 citations. Previous affiliations of Randall B. Lauffer include Pennsylvania State University & Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: A. Relaxivity 2331 E. Outerand Second-Sphere relaxivity 2334 F. Methods of Improving Relaxivity 2336 V. Macromolecular Conjugates 2336.
Abstract: A. Water Exchange 2326 B. Proton Exchange 2327 C. Electronic Relaxation 2327 D. Relaxivity 2331 E. Outerand Second-Sphere Relaxivity 2334 F. Methods of Improving Relaxivity 2336 V. Macromolecular Conjugates 2336 A. Introduction 2336 B. General Conjugation Methods 2336 C. Synthetic Linear Polymers 2336 D. Synthetic Dendrimer-Based Agents 2338 E. Naturally Occurring Polymers (Proteins, Polysaccharides, and Nucleic Acids) 2339

4,125 citations

Journal ArticleDOI
TL;DR: The results show that the cause of this effect is the difference in susceptibility between the capillaries, containing the contrast agent, and the surrounding tissue, and field gradients are produced in the tissue and diffusion of water through these gradients leads to a loss of spin phase coherence and thus a decrease in signal intensity.
Abstract: Using a one-dimensional rapid imaging technique, we have found that injection of lanthanide chelates such as Gd(DTPA)2− leads to a significant decrease (50%) in rat brain signal intensity at 1.45 T using T2-weighted pulse sequences; however, no effect of comparable size is observed with T1-weighted pulse sequences. The transient effect and its kinetics were followed with a temporal resolution of between 1 and 8 s. Experiments with different lanthanide chelates show that the observed decrease in signal intensity correlates with the magnetic moment of each agent but not with their longitudinal relaxivity. Three-dimensional chemical-shift resolved experiments demonstrate significant line broadening in brain during infusion with Dy(DTPA)2− Our results show that the cause of this effect is the difference in susceptibility between the capillaries, containing the contrast agent, and the surrounding tissue. As a result of these susceptibility differences, field gradients are produced in the tissue and diffusion of water through these gradients leads to a loss of spin phase coherence and thus a decrease in signal intensity. We propose this as a new type of contrast agent mechanism in NMR. The effect and its kinetics are likely to be related to important physiological parameters such as cerebral blood volume and cerebral blood flow, and do not depend on a breakdown of the blood-brain barrier as do conventional contrast agent techniques. © 1988 Academic Press, Inc.

718 citations

Journal ArticleDOI
TL;DR: As the first gadolinium-based blood pool agent in human trials, MS-325 has the potential to enhance both dynamic and steady-state MR angiograms and provides vascular signal enhancement superior to that provided with other agents.
Abstract: PURPOSE: To evaluate the protein-binding and signal enhancement characteristics of MS-325, a gadolinium-based magnetic resonance (MR) imaging blood pool agent that binds to albumin, and compare results with those obtained with existing gadolinium- and iron oxide-based agents. MATERIALS AND METHODS: Protein binding in human plasma was measured by means of ultrafiltration. T1 relaxation times (20 MHz) were measured in human plasma or ex vivo samples from rabbits and monkeys injected with 0.1 mmol of MS-325 per kilogram of body weight. Imaging (three-dimensional fast imaging with steady-state precession, or FISP) was performed at 1.0 T in phantoms, which contained varying concentrations of different agents, or rabbits after injection of 0.015-0.100 mmol/kg MS-325. RESULTS: MS-325 is 80%-96% bound in human plasma and exhibits a relaxivity approximately six to 10 times that of gadolinium diethylenetriaminepentaacetic acid (DTPA). Images of phantoms containing MS-325 were significantly brighter than those conta...

446 citations

Journal ArticleDOI
TL;DR: The results suggest that MS-325 binds primarily to site II on HSA, and the relaxivity of MS- 325 when bound to HSA is shown to be site dependent.
Abstract: MS-325 is a novel blood pool contrast agent for magnetic resonance imaging currently undergoing clinical trials to assess blockage in arteries. MS-325 functions by binding to human serum albumin (HSA) in plasma. Binding to HSA serves to prolong plasma half-life, retain the agent in the blood pool, and increase the relaxation rate of water protons in plasma. Ultrafiltration studies with a 5 kDa molecular weight cutoff filter show that MS-325 binds to HSA with stepwise stoichiometric affinity constants (mM(-1)) of K(a1) = 11.0 +/- 2.7, K(a2) = 0.84 +/- 0.16, K(a3) = 0.26 +/- 0.14, and K(a4) = 0.43 +/- 0.24. Under the conditions 0.1 mM MS-325, 4.5% HSA, pH 7.4 (phosphate-buffered saline), and 37 degrees C, 88 +/- 2% of MS-325 is bound to albumin. Fluorescent probe displacement studies show that MS-325 can displace dansyl sarcosine and dansyl-L-asparagine from HSA with inhibition constants (K(i)) of 85 +/- 3 microM and 1500 +/- 850 microM, respectively; however, MS-325 is unable to displace warfarin. These results suggest that MS-325 binds primarily to site II on HSA. The relaxivity of MS-325 when bound to HSA is shown to be site dependent. The Eu(III) analogue of MS-325 is shown to contain one inner-sphere water molecule in the presence and in the absence of HSA. The synthesis of an MS-325 analogue, 5, containing no inner-sphere water molecules is described. Compound 5 is used to estimate the contribution to relaxivity from the outer-sphere water molecules surrounding MS-325. The high relaxivity of MS-325 bound to HSA is primarily because of a 60-100-fold increase in the rotational correlation time of the molecule upon binding (tau(R) = 10.1 +/- 2.6 ns bound vs 115 ps free). Analysis of the nuclear magnetic relaxation dispersion (T(1) and T(2)) profiles also suggests a decrease in the electronic relaxation rate (1/T(1e) at 20 MHz = 2.0 x 10(8) s(-1) bound vs 1.1 x 10(9) s(-1) free) and an increase in the inner-sphere water residency time (tau(m) = 170 +/- 40 ns bound vs 69 +/- 20 ns free).

430 citations


Cited by
More filters
Journal ArticleDOI
20 Jun 2002-Nature
TL;DR: The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials, which has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents.
Abstract: "Space—the final frontier." This preamble to a well-known television series captures the challenge encountered not only in space travel adventures, but also in the field of porous materials, which aims to control the size, shape and uniformity of the porous space and the atoms and molecules that define it. The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials. This has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents. In fact, porous materials now seem set to contribute to developments in areas ranging from microelectronics to medical diagnosis.

4,599 citations

Book
01 May 1988
TL;DR: A comprehensive review of mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed.
Abstract: Photodynamic therapy involves administration of a tumor-localizing photosensitizing agent, which may require metabolic synthesis (i.e., a prodrug), followed by activation of the agent by light of a specific wavelength. This therapy results in a sequence of photochemical and photobiologic processes that cause irreversible photodamage to tumor tissues. Results from preclinical and clinical studies conducted worldwide over a 25-year period have established photodynamic therapy as a useful treatment approach for some cancers. Since 1993, regulatory approval for photodynamic therapy involving use of a partially purified, commercially available hematoporphyrin derivative compound (Photofrin) in patients with early and advanced stage cancer of the lung, digestive tract, and genitourinary tract has been obtained in Canada, The Netherlands, France, Germany, Japan, and the United States. We have attempted to conduct and present a comprehensive review of this rapidly expanding field. Mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed. Technical issues regarding light dosimetry are also considered.

4,580 citations

Journal ArticleDOI
TL;DR: This critical review discusses the origins of MOF luminosity, which include the linker, the coordinated metal ions, antenna effects, excimer and exciplex formation, and guest molecules.
Abstract: Metal–organic frameworks (MOFs) display a wide range of luminescent behaviors resulting from the multifaceted nature of their structure. In this critical review we discuss the origins of MOF luminosity, which include the linker, the coordinated metal ions, antenna effects, excimer and exciplex formation, and guest molecules. The literature describing these effects is comprehensively surveyed, including a categorization of each report according to the type of luminescence observed. Finally, we discuss potential applications of luminescent MOFs. This review will be of interest to researchers and synthetic chemists attempting to design luminescent MOFs, and those engaged in the extension of MOFs to applications such as chemical, biological, and radiation detection, medical imaging, and electro-optical devices (141 references).

4,407 citations

Journal ArticleDOI
TL;DR: A. Relaxivity 2331 E. Outerand Second-Sphere relaxivity 2334 F. Methods of Improving Relaxivity 2336 V. Macromolecular Conjugates 2336.
Abstract: A. Water Exchange 2326 B. Proton Exchange 2327 C. Electronic Relaxation 2327 D. Relaxivity 2331 E. Outerand Second-Sphere Relaxivity 2334 F. Methods of Improving Relaxivity 2336 V. Macromolecular Conjugates 2336 A. Introduction 2336 B. General Conjugation Methods 2336 C. Synthetic Linear Polymers 2336 D. Synthetic Dendrimer-Based Agents 2338 E. Naturally Occurring Polymers (Proteins, Polysaccharides, and Nucleic Acids) 2339

4,125 citations

Journal ArticleDOI
TL;DR: Metal Organic Frameworks in Biomedicine Patricia Horcajada, Ruxandra Gref, Tarek Baati, Phoebe K. Allan, Guillaume Maurin, Patrick Couvreur, G erard F erey, Russell E. Morris, and Christian Serre.
Abstract: Metal Organic Frameworks in Biomedicine Patricia Horcajada,* Ruxandra Gref, Tarek Baati, Phoebe K. Allan, Guillaume Maurin, Patrick Couvreur, G erard F erey, Russell E. Morris, and Christian Serre* Institut Lavoisier, UMR CNRS 8180, Universit e de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France Facult e de Pharmacie, UMR CNRS 8612, Universit e Paris-Sud, 92296 Châtenay-Malabry Cedex, France Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Universit e Montpellier 2, 34095 Montpellier cedex 05, France EaStChem School of Chemistry, University of St. Andrews Purdie Building, St Andrews, KY16 9ST U.K.

3,400 citations