scispace - formally typeset
Search or ask a question
Author

Randall D. Wolcott

Bio: Randall D. Wolcott is an academic researcher from University of Minnesota. The author has contributed to research in topics: Chronic wound & Biofilm. The author has an hindex of 28, co-authored 52 publications receiving 7688 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Bacterial biofilm prevalence in specimens from chronic wounds relative to acute wounds observed in this study provides evidence that biofilms may be abundant in chronic wounds.
Abstract: Chronic wounds including diabetic foot ulcers, pressure ulcers, and venous leg ulcers are a worldwide health problem. It has been speculated that bacteria colonizing chronic wounds exist as highly persistent biofilm communities. This research examined chronic and acute wounds for biofilms and characterized microorganisms inhabiting these wounds. Chronic wound specimens were obtained from 77 subjects and acute wound specimens were obtained from 16 subjects. Culture data were collected using standard clinical techniques. Light and scanning electron microscopy techniques were used to analyze 50 of the chronic wound specimens and the 16 acute wound specimens. Molecular analyses were performed on the remaining 27 chronic wound specimens using denaturing gradient gel electrophoresis and sequence analysis. Of the 50 chronic wound specimens evaluated by microscopy, 30 were characterized as containing biofilm (60%), whereas only one of the 16 acute wound specimens was characterized as containing biofilm (6%). This was a statistically significant difference (p<0.001). Molecular analyses of chronic wound specimens revealed diverse polymicrobial communities and the presence of bacteria, including strictly anaerobic bacteria, not revealed by culture. Bacterial biofilm prevalence in specimens from chronic wounds relative to acute wounds observed in this study provides evidence that biofilms may be abundant in chronic wounds.

1,308 citations

Journal ArticleDOI
TL;DR: A bacterial tag-encoded FLX 16s rDNA amplicon pyrosequencing (bTEFAP) approach that is able to perform diversity analyses of gastrointestinal populations is utilized to examine the microbiota in the feces of cattle.
Abstract: The microbiota of an animal's intestinal tract plays important roles in the animal's overall health, productivity and well-being. There is still a scarcity of information on the microbial diversity in the gut of livestock species such as cattle. The primary reason for this lack of data relates to the expense of methods needed to generate such data. Here we have utilized a bacterial tag-encoded FLX 16s rDNA amplicon pyrosequencing (bTEFAP) approach that is able to perform diversity analyses of gastrointestinal populations. bTEFAP is relatively inexpensive in terms of both time and labor due to the implementation of a novel tag priming method and an efficient bioinformatics pipeline. We have evaluated the microbiome from the feces of 20 commercial, lactating dairy cows. Ubiquitous bacteria detected from the cattle feces included Clostridium, Bacteroides, Porpyhyromonas, Ruminococcus, Alistipes, Lachnospiraceae, Prevotella, Lachnospira, Enterococcus, Oscillospira, Cytophage, Anaerotruncus, and Acidaminococcus spp. Foodborne pathogenic bacteria were detected in several of the cattle, a total of 4 cows were found to be positive for Salmonella spp (tentative enterica) and 6 cows were positive for Campylobacter spp. (tentative lanienae). Using bTEFAP we have examined the microbiota in the feces of cattle. As these methods continue to mature we will better understand the ecology of the major populations of bacteria the lower intestinal tract. This in turn will allow for a better understanding of ways in which the intestinal microbiome contributes to animal health, productivity and wellbeing.

1,084 citations

Journal ArticleDOI
01 Aug 2010-Anaerobe
TL;DR: If the unique microbial flora is found to be a causative or consequent factor in this type of autism, it may have implications with regard to a specific diagnostic test, its epidemiology, and for treatment and prevention.

818 citations

Journal ArticleDOI
TL;DR: The use of 3 separate16S-based molecular amplifications followed by pyrosequencing, shotgun Sanger sequencing, and denaturing gradient gel electrophoresis were utilized to survey the major populations of bacteria that occur in the pathogenic biofilms of three types of chronic wound types.
Abstract: Chronic wound pathogenic biofilms are host-pathogen environments that colonize and exist as a cohabitation of many bacterial species. These bacterial populations cooperate to promote their own survival and the chronic nature of the infection. Few studies have performed extensive surveys of the bacterial populations that occur within different types of chronic wound biofilms. The use of 3 separate16S-based molecular amplifications followed by pyrosequencing, shotgun Sanger sequencing, and denaturing gradient gel electrophoresis were utilized to survey the major populations of bacteria that occur in the pathogenic biofilms of three types of chronic wound types: diabetic foot ulcers (D), venous leg ulcers (V), and pressure ulcers (P). There are specific major populations of bacteria that were evident in the biofilms of all chronic wound types, including Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas, Finegoldia, and Serratia spp. Each of the wound types reveals marked differences in bacterial populations, such as pressure ulcers in which 62% of the populations were identified as obligate anaerobes. There were also populations of bacteria that were identified but not recognized as wound pathogens, such as Abiotrophia para-adiacens and Rhodopseudomonas spp. Results of molecular analyses were also compared to those obtained using traditional culture-based diagnostics. Only in one wound type did culture methods correctly identify the primary bacterial population indicating the need for improved diagnostic methods. If clinicians can gain a better understanding of the wound's microbiota, it will give them a greater understanding of the wound's ecology and will allow them to better manage healing of the wound improving the prognosis of patients. This research highlights the necessity to begin evaluating, studying, and treating chronic wound pathogenic biofilms as multi-species entities in order to improve the outcomes of patients. This survey will also foster the pioneering and development of new molecular diagnostic tools, which can be used to identify the community compositions of chronic wound pathogenic biofilms and other medical biofilm infections.

744 citations

Journal ArticleDOI
03 Oct 2008-PLOS ONE
TL;DR: The findings here suggest that traditional culturing methods may be extremely biased as a diagnostic tool as they select for easily cultured organisms such as Staphylococcus aureus and against difficult to culture bacteria such as anaerobes.
Abstract: Background: Diabetic extremity ulcers are associated with chronic infections. Such ulcer infections are too often followed by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate this type of chronic infection. A primary impediment to the healing of chronic wounds is biofilm phenotype infections. Diabetic foot ulcers are the most common, disabling, and costly complications of diabetes. Here we seek to derive a better understanding of the polymicrobial nature of chronic diabetic extremity ulcer infections. Methods and Findings: Using a new bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) approach we have evaluated the bacterial diversity of 40 chronic diabetic foot ulcers from different patients. The most prevalent bacterial genus associated with diabetic chronic wounds was Corynebacterium spp. Findings also show that obligate anaerobes including Bacteroides, Peptoniphilus, Fingoldia, Anaerococcus, and Peptostreptococcus spp. are ubiquitous in diabetic ulcers, comprising a significant portion of the wound biofilm communities. Other major components of the bacterial communities included commonly cultured genera such as Streptococcus, Serratia, Staphylococcus and Enterococcus spp. Conclusions: In this article, we highlight the patterns of population diversity observed in the samples and introduce preliminary evidence to support the concept of functional equivalent pathogroups (FEP). Here we introduce FEP as consortia of genotypically distinct bacteria that symbiotically produce a pathogenic community. According to this hypothesis, individual members of these communities when they occur alone may not cause disease but when they coaggregate or consort together into a FEP the synergistic effect provides the functional equivalence of well-known pathogens, such as Staphylococcus aureus, giving the biofilm community the factors necessary to maintain chronic biofilm infections. Further work is definitely warranted and needed in order to prove whether the FEPs concept is a viable hypothesis. The findings here also suggest that traditional culturing methods may be extremely biased as a diagnostic tool as they select for easily cultured organisms such as Staphylococcus aureus and against difficult to culture bacteria such as anaerobes. While PCR methods also have bias, further work is now needed in comparing traditional culture results to highresolution molecular diagnostic methods such as bTEFAP.

507 citations


Cited by
More filters
Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: The emerging concept of a microbiota–gut–brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.
Abstract: Recent years have witnessed the rise of the gut microbiota as a major topic of research interest in biology. Studies are revealing how variations and changes in the composition of the gut microbiota influence normal physiology and contribute to diseases ranging from inflammation to obesity. Accumulating data now indicate that the gut microbiota also communicates with the CNS — possibly through neural, endocrine and immune pathways — and thereby influences brain function and behaviour. Studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic bacteria or antibiotic drugs suggest a role for the gut microbiota in the regulation of anxiety, mood, cognition and pain. Thus, the emerging concept of a microbiota-gut-brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.

3,058 citations

Journal ArticleDOI
19 Dec 2013-Cell
TL;DR: A gut-microbiome-brain connection in a mouse model of ASD is supported and a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders is identified.

2,507 citations

Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

Journal ArticleDOI
05 Feb 2010-PLOS ONE
TL;DR: The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota and the level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies to control metabolic diseases by modifying the gut microbiota.
Abstract: Background: Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control Methods and Findings: The study included 36 male adults with a broad range of age and body-mass indices (BMIs), among which 18 subjects were diagnosed with diabetes type 2 The fecal bacterial composition was investigated by real-time quantitative PCR (qPCR) and in a subgroup of subjects (N=20) by tag-encoded amplicon pyrosequencing of the V4 region of the 16S rRNA gene The proportions of phylum Firmicutes and class Clostridia were significantly reduced in the diabetic group compared to the control group (P=003) Furthermore, the ratios of Bacteroidetes to Firmicutes as well as the ratios of Bacteroides-Prevotella group to C coccoides-E rectale group correlated positively and significantly with plasma glucose concentration (P=004) but not with BMIs Similarly, class Betaproteobacteria was highly enriched in diabetic compared to non-diabetic persons (P=002) and positively correlated with plasma glucose (P=004) Conclusions: The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies to control metabolic diseases by modifying the gut microbiota

2,345 citations