scispace - formally typeset
Search or ask a question
Author

Randall Davis

Other affiliations: Carnegie Mellon University, Vassar College, Stanford University  ...read more
Bio: Randall Davis is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Sketch recognition & Sketch. The author has an hindex of 54, co-authored 213 publications receiving 14009 citations. Previous affiliations of Randall Davis include Carnegie Mellon University & Vassar College.


Papers
More filters
Journal ArticleDOI
TL;DR: A framework called the contract net is presented that specifies communication and control in a distributed problem solver, and comparisons with planner, conniver, hearsay-ii, and pup 6 are used to demonstrate that negotiation is a natural extension to the transfer of control mechanisms used in earlier problem-solving systems.

1,305 citations

Journal ArticleDOI
TL;DR: It is argued that keeping in mind all five of these roles that a representation plays provides a usefully broad perspective that sheds light on some longstanding disputes and can invigorate both research and practice in the field.
Abstract: Although knowledge representation is one of the central and, in some ways, most familiar concepts in AI, the most fundamental question about it -- What is it? -- has rarely been answered directly. Numerous papers have lobbied for one or another variety of representation, other papers have argued for various properties a representation should have, and still others have focused on properties that are important to the notion of representation in general. In this article, we go back to basics to address the question directly. We believe that the answer can best be understood in terms of five important and distinctly different roles that a representation plays, each of which places different and, at times, conflicting demands on the properties a representation should have. We argue that keeping in mind all five of these roles provides a usefully broad perspective that sheds light on some longstanding disputes and can invigorate both research and practice in the field.

1,199 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe a system that reasons from first principles, i.e., using knowledge of structure and behavior, to deal with situations that are novel in the sense that their outward manifestations may not have been encountered previously.

959 citations

Journal ArticleDOI
01 Jan 1981
TL;DR: Two forms of cooperation in distributed problem solving are considered: task-sharing and result-sharing, and the basic methodology is presented and systems in which it has been used are described.
Abstract: Two forms of cooperation in distributed problem solving are considered: task-sharing and result-sharing. In the former, nodes assist each other by sharing the computational load for the execution of subtasks of the overall problem. In the latter, nodes assist each other by sharing partial results which are based on somewhat different perspectives on the overall problem. Different perspectives arise because the nodes use different knowledge sources (KS's) (e.g., syntax versus acoustics in the case of a speech-understanding system) or different data (e.g., data that is sensed at different locations in the case of a distributed sensing system). Particular attention is given to control and to internode communication for the two forms of cooperation. For each, the basic methodology is presented and systems in which it has been used are described. The two forms are then compared and the types of applications for which they are suitable are considered.

681 citations

Journal ArticleDOI
TL;DR: The MYCIN system has begun to exhibit a high level of performance as a consultant on the difficult task of selecting antibiotic therapy for bacteremia and issues of representation and design for the system are discussed.

619 citations


Cited by
More filters
Book
01 Jan 1988
TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Abstract: From the Publisher: Probabilistic Reasoning in Intelligent Systems is a complete andaccessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty—and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition—in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

15,671 citations

Journal ArticleDOI
TL;DR: The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections.
Abstract: The advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field.

14,048 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The objective is to describe the performance of design-science research in Information Systems via a concise conceptual framework and clear guidelines for understanding, executing, and evaluating the research.
Abstract: Two paradigms characterize much of the research in the Information Systems discipline: behavioral science and design science The behavioral-science paradigm seeks to develop and verify theories that explain or predict human or organizational behavior The design-science paradigm seeks to extend the boundaries of human and organizational capabilities by creating new and innovative artifacts Both paradigms are foundational to the IS discipline, positioned as it is at the confluence of people, organizations, and technology Our objective is to describe the performance of design-science research in Information Systems via a concise conceptual framework and clear guidelines for understanding, executing, and evaluating the research In the design-science paradigm, knowledge and understanding of a problem domain and its solution are achieved in the building and application of the designed artifact Three recent exemplars in the research literature are used to demonstrate the application of these guidelines We conclude with an analysis of the challenges of performing high-quality design-science research in the context of the broader IS community

10,264 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations