scispace - formally typeset
Search or ask a question
Author

Randall E. Schreck

Bio: Randall E. Schreck is an academic researcher from New York University. The author has contributed to research in topics: Receptor tyrosine kinase & Platelet-derived growth factor receptor. The author has an hindex of 7, co-authored 7 publications receiving 4250 citations.

Papers
More filters
Journal Article
TL;DR: The pharmacokinetic/pharmacodynamic relationship established for SU11248 in these preclinical studies has aided in the design, selection, and evaluation of dosing regimens being tested in human trials.
Abstract: One challenging aspect in the clinical development of molecularly targeted therapies, which represent a new and promising approach to treating cancers, has been the identification of a biologically active dose rather than a maximum tolerated dose. The goal of the present study was to identify a pharmacokinetic/pharmacodynamic relationship in preclinical models that could be used to help guide selection of a clinical dose. SU11248, a novel small molecule receptor tyrosine kinase inhibitor with direct antitumor as well as antiangiogenic activity via targeting the vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), KIT, and FLT3 receptor tyrosine kinases, was used as the pharmacological agent in these studies. In mouse xenograft models, SU11248 exhibited broad and potent antitumor activity causing regression, growth arrest, or substantially reduced growth of various established xenografts derived from human or rat tumor cell lines. To predict the target SU11248 exposure required to achieve antitumor activity in mouse xenograft models, we directly measured target phosphorylation in tumor xenografts before and after SU11248 treatment and correlated this with plasma inhibitor levels. In target modulation studies in vivo , SU11248 selectively inhibited Flk-1/KDR (VEGF receptor 2) and PDGF receptor β phosphorylation (in a time- and dose-dependent manner) when plasma concentrations of inhibitor reached or exceeded 50–100 ng/ml. Similar results were obtained in a functional assay of VEGF-induced vascular permeability in vivo . Constant inhibition of VEGFR2 and PDGF receptor β phosphorylation was not required for efficacy; at highly efficacious doses, inhibition was sustained for 12 h of a 24-h dosing interval. The pharmacokinetic/pharmacodynamic relationship established for SU11248 in these preclinical studies has aided in the design, selection, and evaluation of dosing regimens being tested in human trials.

1,990 citations

Journal Article
TL;DR: Findings support that pharmacological inhibition of the enzymatic activity of the vascular endothelial growth factor receptor represents a novel strategy for limiting the growth of a wide variety of tumor types.
Abstract: SU5416, a novel synthetic compound, is a potent and selective inhibitor of the Flk-1/KDR receptor tyrosine kinase that is presently under evaluation in Phase I clinical studies for the treatment of human cancers. SU5416 was shown to inhibit vascular endothelial growth factor-dependent mitogenesis of human endothelial cells without inhibiting the growth of a variety of tumor cells in vitro. In contrast, systemic administration of SU5416 at nontoxic doses in mice resulted in inhibition of subcutaneous tumor growth of cells derived from various tissue origins. The antitumor effect of SU5416 was accompanied by the appearance of pale white tumors that were resected from drug-treated animals, supporting the antiangiogenic property of this agent. These findings support that pharmacological inhibition of the enzymatic activity of the vascular endothelial growth factor receptor represents a novel strategy for limiting the growth of a wide variety of tumor types.

1,081 citations

Journal Article
TL;DR: The feasibility of selectively targeting c-Met with ATP-competitive small-molecules with high selectivity is demonstrated and the therapeutic potential of targetingc-Met in human cancers is suggested.
Abstract: The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), have been implicated in the development and progression of several human cancers and are attractive targets for cancer therapy. PHA-665752 was identified as a small molecule, ATP-competitive, active-site inhibitor of the catalytic activity of c-Met kinase ( K i 4 nm). PHA-665752 also exhibited >50-fold selectivity for c-Met compared with a panel of diverse tyrosine and serine-threonine kinases. In cellular studies, PHA-665752 potently inhibited HGF-stimulated and constitutive c-Met phosphorylation, as well as HGF and c-Met-driven phenotypes such as cell growth (proliferation and survival), cell motility, invasion, and/or morphology of a variety of tumor cells. In addition, PHA-665752 inhibited HGF-stimulated or constitutive phosphorylation of mediators of downstream signal transduction of c-Met, including Gab-1, extracellular regulated kinase, Akt, signal transducer and activator of transcription 3, phospholipase C γ, and focal adhesion kinase, in multiple tumor cell lines in a pattern correlating to the phenotypic response of a given tumor cell. In in vivo studies, a single dose of PHA-665752 inhibited c-Met phosphorylation in tumor xenografts for up to 12 h. Inhibition of c-Met phosphorylation was associated with dose-dependent tumor growth inhibition/growth delay over a repeated administration schedule at well-tolerated doses. Interestingly, potent cytoreductive activity was demonstrated in a gastric carcinoma xenograft model. Collectively, these results demonstrate the feasibility of selectively targeting c-Met with ATP-competitive small-molecules and suggest the therapeutic potential of targeting c-Met in human cancers.

553 citations

Journal ArticleDOI
TL;DR: Three classes of 3-substituted indolin-2-ones containing propionic acid functionality attached to the pyrrole ring at the C-3 position of the core have been identified as catalytic inhibitors of the vascular endothelial growth factor, fibroblast growth factor receptor, and platelet-derived growth factor RTKs.
Abstract: Receptor tyrosine kinases (RTKs) have been implicated as therapeutic targets for the treatment of human diseases including cancers, inflammatory diseases, cardiovascular diseases including arterial restenosis, and fibrotic diseases of the lung, liver, and kidney. Three classes of 3-substituted indolin-2-ones containing propionic acid functionality attached to the pyrrole ring at the C-3 position of the core have been identified as catalytic inhibitors of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF) RTKs. Some of the compounds were found to inhibit the tyrosine kinase activity associated with isolated vascular endothelial growth factor receptor 2 (VEGF-R2) [fetal liver tyrosine kinase 1 (Flk-1)/kinase insert domain-containing receptor (KDR)], fibroblast growth factor receptor (FGF-R), and platelet-derived growth factor receptor (PDGF-R) tyrosine kinase with IC(50) values at nanomolar level. Thus, compound 1 showed inhibition against VEGF-R2 (Flk-1/KDR) and FGF-R1 tyrosine kinase activity with IC(50) values of 20 and 30 nM, respectively, while compound 16f inhibited the PDGF-R tyrosine kinase activity with IC(50) value of 10 nM. Structural models and structure-activity relationship analysis of these compounds for the target receptors are discussed. The cellular activities of these compounds were profiled using cellular proliferation assays as measured by bromodeoxyuridine (BrdU) incorporation. Specific and potent inhibition of cell growth was observed for some of these compounds. These data provide evidence that these compounds can be used to inhibit the function of these target receptors.

300 citations

Journal Article
TL;DR: The durability of the in vitro activity of SU5416 was shown to be attributable to its long-lasting ability to specifically inhibit VEGF-dependent phosphorylation of Flk-1/KDR and subsequent downstream signaling, althoughSU5416 is not an irreversible inhibitor of FlKDR tyrosine kinase activity.
Abstract: SU5416, a selective inhibitor of the tyrosine kinase activity of the vascular endothelial growth factor (VEGF) receptor Flk-1/KDR, is currently in Phase III clinical trials for the treatment of advanced malignancies. In cellular assays, SU5416 inhibits the VEGF-dependent mitogenic/proliferative response of human umbilical vein endothelial cells (HUVECs). In tumor xenograft models, SU5416 inhibits the growth of tumors from a variety of origins by inhibiting tumor angiogenesis. In three different human tumor xenograft models, infrequent (once or twice a week) administration of SU5416 is efficacious despite the fact that it has a short plasma half-life (30 min), which suggests that SU5416 has long-lasting inhibitory activity in vivo . The goal of the present study was to determine the basis for the prolonged activity of SU5416. The results indicate that a short (3 h) exposure to 5 μm SU5416 (to mimic plasma levels of the compound as measured in patients who were receiving SU5416 therapy) produced long-lasting (at least 72 h) inhibition of the VEGF-dependent proliferation of HUVECs in culture, which indicate that SU5416 has long-lasting inhibitory activity in vitro as well as in vivo . SU5416 treatment of HUVECs did not affect surface expression of Flk-1/KDR or the affinity of the receptor for VEGF. Instead, the durability of the in vitro activity of SU5416 was shown to be attributable to its long-lasting ability to specifically inhibit VEGF-dependent phosphorylation of Flk-1/KDR and subsequent downstream signaling, although SU5416 is not an irreversible inhibitor of Flk-1/KDR tyrosine kinase activity. The long-lasting inhibition of cellular responses to VEGF was attributable to the accumulation of SU5416 in cells, as shown using radiolabeled compound, such that inhibitory cellular concentrations of SU5416 are maintained long after the removal of the compound from the medium. The long-lasting inhibitory activity of SU5416 in vitro is consistent with the finding that SU5416 has demonstrated evidence of biological activity in clinical studies when administered twice a week despite a short plasma half-life.

209 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Progression-free survival was longer and response rates were higher in patients with metastatic renal-cell cancer who received sunitinib than in those receiving interferon alfa.
Abstract: Background Since sunitinib malate has shown activity in two uncontrolled studies in patients with metastatic renal-cell carcinoma, a comparison of the drug with interferon alfa in a phase 3 trial is warranted. Methods We enrolled 750 patients with previously untreated, metastatic renal-cell carcinoma in a multicenter, randomized, phase 3 trial to receive either repeated 6-week cycles of sunitinib (at a dose of 50 mg given orally once daily for 4 weeks, followed by 2 weeks without treatment) or interferon alfa (at a dose of 9 MU given subcutaneously three times weekly). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, patient-reported outcomes, and safety. Results The median progression-free survival was significantly longer in the sunitinib group (11 months) than in the interferon alfa group (5 months), corresponding to a hazard ratio of 0.42 (95% confidence interval, 0.32 to 0.54; P<0.001). Sunitinib was also associated with a higher objective response rate than was interferon alfa (31% vs. 6%, P<0.001). The proportion of patients with grade 3 or 4 treatment-related fatigue was significantly higher in the group treated with interferon alfa, whereas diarrhea was more frequent in the sunitinib group (P<0.05). Patients in the sunitinib group reported a significantly better quality of life than did patients in the interferon alfa group (P<0.001). Conclusions Progression-free survival was longer and response rates were higher in patients with metastatic renal-cell cancer who received sunitinib than in those receiving interferon alfa (ClinicalTrials.gov numbers, NCT00098657 and NCT00083889).

5,244 citations

Journal ArticleDOI
TL;DR: Enrichment results demonstrate the importance of the novel XP molecular recognition and water scoring in separating active and inactive ligands and avoiding false positives.
Abstract: A novel scoring function to estimate protein-ligand binding affinities has been developed and implemented as the Glide 4.0 XP scoring function and docking protocol. In addition to unique water desolvation energy terms, protein-ligand structural motifs leading to enhanced binding affinity are included: (1) hydrophobic enclosure where groups of lipophilic ligand atoms are enclosed on opposite faces by lipophilic protein atoms, (2) neutral-neutral single or correlated hydrogen bonds in a hydrophobically enclosed environment, and (3) five categories of charged-charged hydrogen bonds. The XP scoring function and docking protocol have been developed to reproduce experimental binding affinities for a set of 198 complexes (RMSDs of 2.26 and 1.73 kcal/mol over all and well-docked ligands, respectively) and to yield quality enrichments for a set of fifteen screens of pharmaceutical importance. Enrichment results demonstrate the importance of the novel XP molecular recognition and water scoring in separating active and inactive ligands and avoiding false positives.

4,666 citations

Journal ArticleDOI
18 May 2007-Science
TL;DR: It is proposed that MET amplification may promote drug resistance in other ERBB-driven cancers as well after it was found that amplification of MET causes gefitinib resistance by driving ERBB3 (HER3)–dependent activation of PI3K, a pathway thought to be specific to EGFR/ERBB family receptors.
Abstract: The epidermal growth factor receptor (EGFR) kinase inhibitors gefitinib and erlotinib are effective treatments for lung cancers with EGFR activating mutations, but these tumors invariably develop drug resistance. Here, we describe a gefitinib-sensitive lung cancer cell line that developed resistance to gefitinib as a result of focal amplification of the MET proto-oncogene. inhibition of MET signaling in these cells restored their sensitivity to gefitinib. MET amplification was detected in 4 of 18 (22%) lung cancer specimens that had developed resistance to gefitinib or erlotinib. We find that amplification of MET causes gefitinib resistance by driving ERBB3 (HER3)–dependent activation of PI3K, a pathway thought to be specific to EGFR/ERBB family receptors. Thus, we propose that MET amplification may promote drug resistance in other ERBB-driven cancers as well.

4,218 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure, and proposes guidelines for the use of protein Kinase inhibitors in cell-based assays.
Abstract: The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.

4,091 citations

Journal ArticleDOI
TL;DR: Data demonstrate that BAY 43-9006 is a novel dual action RAF kinase and VEGFR inhibitor that targets tumor cell proliferation and tumor angiogenesis.
Abstract: The RAS/RAF signaling pathway is an important mediator of tumor cell proliferation and angiogenesis. The novel bi-aryl urea BAY 43-9006 is a potent inhibitor of Raf-1, a member of the RAF/MEK/ERK signaling pathway. Additional characterization showed that BAY 43-9006 suppresses both wild-type and V599E mutant BRAF activity in vitro. In addition, BAY 43-9006 demonstrated significant activity against several receptor tyrosine kinases involved in neovascularization and tumor progression, including vascular endothelial growth factor receptor (VEGFR)-2, VEGFR-3, platelet-derived growth factor receptor beta, Flt-3, and c-KIT. In cellular mechanistic assays, BAY 43-9006 demonstrated inhibition of the mitogen-activated protein kinase pathway in colon, pancreatic, and breast tumor cell lines expressing mutant KRAS or wild-type or mutant BRAF, whereas non-small-cell lung cancer cell lines expressing mutant KRAS were insensitive to inhibition of the mitogen-activated protein kinase pathway by BAY 43-9006. Potent inhibition of VEGFR-2, platelet-derived growth factor receptor beta, and VEGFR-3 cellular receptor autophosphorylation was also observed for BAY 43-9006. Once daily oral dosing of BAY 43-9006 demonstrated broad-spectrum antitumor activity in colon, breast, and non-small-cell lung cancer xenograft models. Immunohistochemistry demonstrated a close association between inhibition of tumor growth and inhibition of the extracellular signal-regulated kinases (ERKs) 1/2 phosphorylation in two of three xenograft models examined, consistent with inhibition of the RAF/MEK/ERK pathway in some but not all models. Additional analyses of microvessel density and microvessel area in the same tumor sections using antimurine CD31 antibodies demonstrated significant inhibition of neovascularization in all three of the xenograft models. These data demonstrate that BAY 43-9006 is a novel dual action RAF kinase and VEGFR inhibitor that targets tumor cell proliferation and tumor angiogenesis.

3,749 citations