scispace - formally typeset
Search or ask a question
Author

Randall E. Youngman

Bio: Randall E. Youngman is an academic researcher from Corning Inc.. The author has contributed to research in topics: Glass transition & Borosilicate glass. The author has an hindex of 32, co-authored 131 publications receiving 3103 citations. Previous affiliations of Randall E. Youngman include Indiana University & University of Illinois at Urbana–Champaign.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a two-state statistical mechanical model of boron speciation in which addition of network modifiers leads to a competition between the formation of nonbridging oxygen and the conversion ofboron from trigonal to tetrahedral configuration, and derives a detailed topological representation of alkali-alkaline earth-borosilicate glasses that enables the accurate prediction of properties such as glass transition temperature, liquid fragility, and hardness.
Abstract: Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. Noted for their high chemical durability and thermal shock resistance, borosilicate glasses have found a variety of important uses from common household and laboratory glassware to high-tech applications such as liquid crystal displays. In this paper, we investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR measurements, we present a two-state statistical mechanical model of boron speciation in which addition of network modifiers leads to a competition between the formation of nonbridging oxygen and the conversion of boron from trigonal to tetrahedral configuration. Using this model, we derive a detailed topological representation of alkali–alkaline earth–borosilicate glasses that enables the accurate prediction of properties such as glass transition temperature, liquid fragi...

287 citations

Journal ArticleDOI
TL;DR: Variation of the fluorinated aromatic side chain or N-terminal functionalization perturbs hydrogelation, implicating fluorous and π–π interactions as the primary determinants for molecular recognition and self-assembly.
Abstract: Phenylalanine (Phe)-derived molecules have been exploited as low molecular weight hydrogelators Perturbing the hydrophobic and π–π interactions that promote self-assembly and hydrogelation of these derivatives will facilitate improved understanding of hydrogelation phenomena and the design of small molecule hydrogelators with novel properties The efficient self-assembly and hydrogelation of Fmoc-protected pentafluorophenylalanine (Fmoc-F5-Phe) are reported herein Suspensions of Fmoc-F5-Phe in water undergo rapid self-assembly to entangled fibrillar structures within minutes, giving rise to rigid supramolecular gels Self-assembly occurs at concentrations as low as 2 mM (01 wt%) Variation of the fluorinated aromatic side chain or N-terminal functionalization perturbs hydrogelation, implicating fluorous and π–π interactions as the primary determinants for molecular recognition and self-assembly The hydrophobic and electronic properties of F5-Phe provide remarkable potential for functional self-assembly in a minimal amino acid scaffold

161 citations

Journal ArticleDOI
08 Sep 1995-Science
TL;DR: Oxygen-17 NMR spectra resolved detailed features of the inclusion of these units in boroxol rings, oxygen bridging two rings, and oxygen shared between two nonring BO3/2 units, and these domains are proposed to be the structural basis of intermediate-range order in glassy boron oxide.
Abstract: Ordering at short-length scales is a universal feature of the glassy state. Experiments on boron oxide and other materials indicate that ordering on mesoscopic-length scales may also be universal. The high-resolution nuclear magnetic resonance (NMR) measurements of oxygen in boron oxide glass presented here provide evidence for structural units responsible for ordering on short- and intermediate-length scales. At the molecular level, planar BO3/2 units accounted for the local ordering. Oxygen-17 NMR spectra resolved detailed features of the inclusion of these units in boroxol rings, oxygen bridging two rings, and oxygen shared between two nonring BO3/2 units. On the basis of these and corroborative boron-11 NMR and scattering results, boron oxide glass consists of domains that are rich or poor in boroxol rings; these domains are proposed to be the structural basis of intermediate-range order in glassy boron oxide.

123 citations

Journal ArticleDOI
TL;DR: The first high-field boron nuclear magnetic resonance spectra of sufficient resolution to detect multiple sites in borate glass were reported in this paper, where the more populated sites were assigned to borons in boroxol rings, and the less populated site was assigned to non-ring BORON trioxide units.
Abstract: The first high-field boron nuclear magnetic resonance spectra of sufficient resolution to detect multiple sites in borate glass are reported. These results are obtained by using dynamic angle spinning nuclear magnetic resonance spectroscopy, in fields of 4.7, 7.1 and 8.4 Tesla, to measure the boron-11 spectrum in samples enriched in boron-10. Two boron sites, which differ in quadrupole interaction strength by 5%, in chemical shift by 5 ppm, and have relative population of 3:1, were resolved. The more populated site is assigned to boron in boroxol rings, and the less populated site is assigned to non-ring boron trioxide units. The chemical shift difference between these sites suggests that the BO bond in the boroxol rings is somewhat longer than that in the boron trioxide groups.

120 citations

Journal ArticleDOI
TL;DR: The structure of homogeneous binary SiO2−Al2O3 glasses with 0.4 to up to 12.0 wt % Al 2O3 have been studied using high-resolution 27Al, 17O, and 29Si NMR spectroscopic techniques.
Abstract: The structure of homogeneous binary SiO2−Al2O3 glasses with 0.4 to up to 12.0 wt % Al2O3 have been studied using high-resolution 27Al, 17O, and 29Si NMR spectroscopic techniques. All glasses are found to contain a mixture of 4-, 5-, and 6-fold coordinated Al sites (AlIV, AlV, and AlVI). The relative proportions of these sites are strongly dependent on composition with AlIV (AlV) being most dominant in glasses with <1 wt % (≥7 wt %) Al2O3. On the other hand, no significant dependence of Al speciation on fictive temperature is observed. The coordination polyhedra of a significant fraction of the AlVI sites in these glasses are found to be unusually distorted, similar to that in the case of crystalline Al2SiO5 polymorphs. The 17O NMR spectra show the presence of three types of oxygen sites, Si−O−AlV, Si−O−AlIV, and Si−O−Si, in these glasses. The 29Si MAS NMR spectra corroborate these results and reveal the presence of Q4 sites with and without Al next-nearest neighbors. It is hypothesized that the tetrahedra...

109 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: This review focuses on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators.
Abstract: In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping ...

1,395 citations

01 Jan 2016
TL;DR: “Essentials” covers force field and molecular orbital theory, Monte Carlo and Molecular Dynamics simulations, thermodynamic and electronic (spectroscopic) property calculation, condensed phase treatment and a few more topics, and is an alternative to Andrew R. Leach's well-established “Molecular Modeling” and Frank Jensen’s “Introduction to Computational Chemistry”.
Abstract: The fact that a new text book introducing the essentials of computational chemistry contains more than 500 pages shows impressively the grown and still growing size and importance of this field of chemistry. The author’s objectives of the book, using his own words, are “to provide a survey of computational chemistry its underpinnings, its jargon, its strengths and weaknesses that will be accessible to both the experimental and theoretical communities”. This design as a general introduction into computational chemistry makes it an alternative to Andrew R. Leach’s well-established “Molecular Modeling” (Prentice Hall) and Frank Jensen’s “Introduction to Computational Chemistry” (Wiley), although the latter focuses on the theory of electronic structure methods. Cramer’s “Essentials” covers force field and molecular orbital theory, Monte Carlo and Molecular Dynamics simulations, thermodynamic and electronic (spectroscopic) property calculation, condensed phase treatment and a few more topics. Moreover, the book contains thirteen selected case studies sexamples taken from the literature sto illustrate the application of the just presented theoretical and computational models. This especially makes the text book well suited for both classroom discussion and self-study. Each chapter of “Essentials” covers a main topic of computational chemistry and will be briefly described here; all chapters are ended by a bibliography and suggested additional readings as well as the literature references cited in the text. In chapter 1 the author defines basic terms such as “theory”, “model”, and “computation”, introduces the concept of the potential energy surface and provides some general considerations about hardware and software. Interestingly, the first equation occurring in the text is not Schro ̈dinger’s equation, as is the case for most computational chemistry introductions, but the famous Einstein relation. The second chapter deals with molecular mechanics. It explains the different potential energy contributions, introduces the field of structure optimization, and provides an overview of the variety of modern force fields. Chapter 3 covers the simulation of molecular ensembles. It defines phase space and trajectories and shows the formalism of, and problems and difference between, Monte Carlo and molecular dynamics. In chapter 4 the author introduces the foundations of molecular orbital theory. Basic concepts such as Hamilton operator, LCAO basis set approach, many-electron wave functions, etc. are explained. To illuminate the LCAO variational process, the Hu ̈ckel theory is presented with an example. Chapter 5 deals with semiempirical molecular orbital (MO) theory. Besides the classical approaches (extended Hu ̈ckel, CNDO, INDO, NDDO) and methods (e.g., MNDO, AM1, PM3) and their performance, examples are provided from the ongoing development in that still fascinating area. Ab initio MO theory is presented in chapter 6; the basis set concept is discussed in detail, and, after some considerations from an user’s point of view, the general performance of ab initio methods is explicated. The next chapter covers the problem of electron correlation and gives the most prominent solutions for its treatment: configuration interaction, theory of the multiconfiguration self-consistent field, perturbation, and coupled cluster. Practical issues are also discussed. Chapter 8’s topic is density functional theory (DFT). Its theoretical foundation, methodology, and some functionals as well as its pros and cons compared to MO theory are presented together with a general performance overview. The next two chapters deal with charge distribution, derived and spectroscopic properties (e.g., atomic charges, polarizability, rotational, vibrational, and NMR spectra), and thermodynamic properties (e.g., zero-point vibrational energy, free energy of formation, and reaction). The modeling of condensed phases is addressed in chapters 11 (implicit models) and 12 (explicit models), which closes with a comparison between the two approaches. Chapter 13 familiarizes the reader with hybrid quantum mechanical/molecular mechanical (QM/MM) models. Polarization as well as the problematic implications of unsaturated QM and MM components are discussed, and empirical valence bond methods are also presented. The treatment of excited states is the topic of chapter 14; besides CI and MCSCF as computational methods, transition probabilities and solvatochromism are discussed. The last chapter deals with reaction dynamics, mostly adiabaticskinetics, rate constants, reaction paths, and transition state theory are section topics here sbut also nonadiabatic, introducing curve crossing and Marcus theory in brief. The appendix is divided into four parts: an acronym glossary (which is very helpful), an overview of symmetry and group theory, an introduction to spin algebra, and finally a section about orbital localization. A rather detailed index ends the book. The “Essentials” writing style fits the fascinating topic: one reads on and on andssurprise! sanother chapter has been absorbed. The text is complemented by a large number of black and white figures and clear tables, mostly self-explanatory with descriptive captions. The use of equations and mathematical formulas in general is well-balanced, and the level of math should be understandable for every natural scientist with some basic knowledge of physics. There are only a few minor shortcomings: for example, a literature reference cited in the text (“Beck et al.”, p 142) is missing in the bibliography; “Kronecker” is mistyped with o ̈; and the author completely forgot to reference Leach’s text book when referring to other computational chemistry introductions. However, the author has established a specific errata web page (http://pollux.chem.umn.edu/ ∼cramer/Errors.html) with all known errors. These will be corrected in the next printing or next revised edition, respectively. With its emphasis, on one hand, on the basic concepts and applications rather than pure theory and mathematics, and on the other hand, coverage of quantum mechanical and classical mechanical models including examples from inorganic, organic, and biological chemistry, “Essentials” is a useful tool not only for teaching and learning but also as a quick reference, and thus will most probably become one of the standard text books for computational chemistry.

814 citations

Journal ArticleDOI
TL;DR: This review rationalises the structural features which govern the self-assembly of aromatic peptide amphiphiles by focusing on four segments, paving the way to a more rational design of nanomaterials based on aromatic peptides.
Abstract: Aromatic peptide amphiphiles are gaining popularity as building blocks for the bottom-up fabrication of nanomaterials, including gels. These materials combine the simplicity of small molecules with the versatility of peptides, with a range of applications proposed in biomedicine, nanotechnology, food science, cosmetics, etc. Despite their simplicity, a wide range of self-assembly behaviours have been described. Due to varying conditions and protocols used, care should be taken when attempting to directly compare results from the literature. In this review, we rationalise the structural features which govern the self-assembly of aromatic peptide amphiphiles by focusing on four segments, (i) the N-terminal aromatic component, (ii) linker segment, (iii) peptide sequence, and (iv) C-terminus. It is clear that the molecular structure of these components significantly influences the self-assembly process and resultant supramolecular architectures. A number of modes of assembly have been proposed, including parallel, antiparallel, and interlocked antiparallel stacking conformations. In addition, the co-assembly arrangements of aromatic peptide amphiphiles are reviewed. Overall, this review elucidates the structural trends and design rules that underpin the field of aromatic peptide amphiphile assembly, paving the way to a more rational design of nanomaterials based on aromatic peptide amphiphiles.

629 citations