scispace - formally typeset
Search or ask a question
Author

Randall L. McEntaffer

Bio: Randall L. McEntaffer is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Grating & Spectrometer. The author has an hindex of 18, co-authored 136 publications receiving 1357 citations. Previous affiliations of Randall L. McEntaffer include University of Colorado Boulder & University of Iowa.


Papers
More filters
Journal ArticleDOI
TL;DR: The Lynx architecture enables a broad range of unique and compelling science to be carried out mainly through a General Observer Program, envisioned to include detecting the very first seed black holes, revealing the high-energy drivers of galaxy formation and evolution, and characterizing the mechanisms that govern stellar evolution and stellar ecosystems.
Abstract: Lynx, one of the four strategic mission concepts under study for the 2020 Astrophysics Decadal Survey, provides leaps in capability over previous and planned x-ray missions and provides synergistic observations in the 2030s to a multitude of space- and ground-based observatories across all wavelengths. Lynx provides orders of magnitude improvement in sensitivity, on-axis subarcsecond imaging with arcsecond angular resolution over a large field of view, and high-resolution spectroscopy for point-like and extended sources in the 0.2- to 10-keV range. The Lynx architecture enables a broad range of unique and compelling science to be carried out mainly through a General Observer Program. This program is envisioned to include detecting the very first seed black holes, revealing the high-energy drivers of galaxy formation and evolution, and characterizing the mechanisms that govern stellar evolution and stellar ecosystems. The Lynx optics and science instruments are carefully designed to optimize the science capability and, when combined, form an exciting architecture that utilizes relatively mature technologies for a cost that is compatible with the projected NASA Astrophysics budget.

139 citations

Proceedings ArticleDOI
TL;DR: The X-ray Surveyor (X-S) as discussed by the authors is a large-scale mission with a high-resolution mirror assembly and an instrument set, which may include an x-ray microcalorimeter, a highdefinition imager, and a dispersive grating spectrometer and its readout.
Abstract: NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions—such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

76 citations

Journal ArticleDOI
TL;DR: In this article, a novel grating fabrication method that utilizes common lithographic and microfabrication techniques to produce the high fidelity groove profile necessary to achieve high resolving power grating spectrometers is presented.
Abstract: Future NASA X-ray spectroscopy missions will require high throughput, high resolving power grating spectrometers Off-plane reflection gratings are capa- ble of meeting the performance requirements needed to realize the scientific goals of these missions We have identified a novel grating fabrication method that utilizes common lithographic and microfabrication techniques to produce the high fidelity groove profile necessary to achieve this performance Application of this process has produced an initial pre-master that exhibits a radial (variable line spacing along the groove dimension), high density (>6000 grooves/mm), laminar profile This pre- master has been tested for diffraction efficiency at the BESSY II synchrotron light facility and diffracts up to 55 % of incident light into usable spectral orders Fur- thermore, tests of spectral resolving power show that these gratings are capable of obtaining resolving powers well above 1300 (λ/�λ ) with limitations due to the test apparatus, not the gratings Obtaining these results has provided confidence that this

66 citations

Journal ArticleDOI
TL;DR: The data suggest that both putative noncatalytic sites of PDE6α′ are important for binding of cGMP, and that the two binding sites are coupled.

62 citations

Proceedings ArticleDOI
TL;DR: Arcus as discussed by the authors is a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50) with unprecedented sensitivity, effective areas of >500 sq cm and spectral resolution >2500.
Abstract: Arcus will be proposed to the NASA Explorer program as a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50) with unprecedented sensitivity – effective areas of >500 sq cm and spectral resolution >2500. The Arcus key science goals are (1) to determine how baryons cycle in and out of galaxies by measuring the effects of structure formation imprinted upon the hot gas that is predicted to lie in extended halos around galaxies, groups, and clusters, (2) to determine how black holes influence their surroundings by tracing the propagation of out-flowing mass, energy and momentum from the vicinity of the black hole out to large scales and (3) to understand how accretion forms and evolves stars and circumstellar disks by observing hot infalling and outflowing gas in these systems. Arcus relies upon grazing-incidence silicon pore X-ray optics with the same 12m focal length (achieved using an extendable optical bench) that will be used for the ESA Athena mission. The focused X-rays from these optics will then be diffracted by high-efficiency off-plane reflection gratings that have already been demonstrated on sub-orbital rocket flights, imaging the results with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. The majority of mission operations will not be complex, as most observations will be long (~100 ksec), uninterrupted, and pre-planned, although there will be limited capabilities to observe targets of opportunity, such as tidal disruption events or supernovae with a 3-5 day turnaround. After the end of prime science, we plan to allow guest observations to maximize the science return of Arcus to the community.

48 citations


Cited by
More filters
15 Mar 1979
TL;DR: In this article, the experimental estimation of parameters for models can be solved through use of the likelihood ratio test, with particular attention to photon counting experiments, and procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply.
Abstract: Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.

1,748 citations

Journal ArticleDOI
TL;DR: Basic biochemical properties, cellular regulation, expression patterns, and physiological functions of the different PDE isoforms will be discussed and how these properties relate to the current and future development of PDE inhibitors as pharmacological agents is especially considered.
Abstract: Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that regulate the cellular levels of the second messengers, cAMP and cGMP, by controlling their rates of degradation. There are 11 different PDE families, with each family typically having several different isoforms and splice variants. These unique PDEs differ in their three-dimensional structure, kinetic properties, modes of regulation, intracellular localization, cellular expression, and inhibitor sensitivities. Current data suggest that individual isozymes modulate distinct regulatory pathways in the cell. These properties therefore offer the opportunity for selectively targeting specific PDEs for treatment of specific disease states. The feasibility of these enzymes as drug targets is exemplified by the commercial and clinical successes of the erectile dysfunction drugs, sildenafil (Viagra), tadalafil (Cialis), and vardenafil (Levitra). PDE inhibitors are also currently available or in development for treatment of a variety of other pathological conditions. In this review the basic biochemical properties, cellular regulation, expression patterns, and physiological functions of the different PDE isoforms will be discussed. How these properties relate to the current and future development of PDE inhibitors as pharmacological agents is especially considered. PDEs hold great promise as drug targets and recent research advances make this an exciting time for the field of PDE research.

1,651 citations

Journal ArticleDOI
TL;DR: GAP activity can sharpen the termination of a signal upon removal of stimulus, attenuate a signal either as a feedback inhibitor or in response to a second input, promote regulatory association of other proteins, or redirect signaling within a G protein signaling network.
Abstract: ▪ Abstract GTPase-activating proteins (GAPs) regulate heterotrimeric G proteins by increasing the rates at which their α subunits hydrolyze bound GTP and thus return to the inactive state. G protein GAPs act allosterically on Gα subunits, in contrast to GAPs for the Ras-like monomeric GTP-binding proteins. Although they do not contribute directly to the chemistry of GTP hydrolysis, G protein GAPs can accelerate hydrolysis >2000-fold. G protein GAPs include both effector proteins (phospholipase C-β, p115RhoGEF) and a growing family of regulators of G protein signaling (RGS proteins) that are found throughout the animal and fungal kingdoms. GAP activity can sharpen the termination of a signal upon removal of stimulus, attenuate a signal either as a feedback inhibitor or in response to a second input, promote regulatory association of other proteins, or redirect signaling within a G protein signaling network. GAPs are regulated by various controls of their cellular concentrations, by complex interactions wit...

1,123 citations

Journal ArticleDOI
TL;DR: The complex series of interactions and conformational changes that connect agonist binding to G protein activation raise various interesting questions about the structure, biomechanics, kinetics and specificity of signal transduction across the plasma membrane.
Abstract: Heterotrimeric G proteins have a crucial role as molecular switches in signal transduction pathways mediated by G-protein-coupled receptors. Extracellular stimuli activate these receptors, which then catalyse GTP-GDP exchange on the G protein alpha-subunit. The complex series of interactions and conformational changes that connect agonist binding to G protein activation raise various interesting questions about the structure, biomechanics, kinetics and specificity of signal transduction across the plasma membrane.

1,072 citations

Proceedings ArticleDOI
23 Aug 1992
TL;DR: Mes premiers remtrciements trout aux auteurs des 206 communications th6matiquts et notes de projet, sans qui ces actes n'auraient 6videmment pas vu le jour.
Abstract: Mes premiers remtrciements trout aux auteurs des 206 communications th6matiquts et notes de projet, sans qui ces actes n'auraient 6videmment pas vu le jour. / Is oat contribu6 h la qualit6 scientifique et ,5 I'hmuog6t~6it6 pr6sentationntlle de leurs articles en refondant les versions iuitiales soumises an comit6 de programme, ea acceptant de suivre les r~gles de pr6sentation indiqu6es, et en nous envoyant parrots plusieurs versions am61ior6es surun point ou sur l'autrc.

824 citations