scispace - formally typeset
Search or ask a question
Author

Randy C. Ploetz

Bio: Randy C. Ploetz is an academic researcher from University of Florida. The author has contributed to research in topics: Laurel wilt & Xyleborus glabratus. The author has an hindex of 49, co-authored 166 publications receiving 7757 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Testing whether lineages of the Panama disease pathogen have a monophyletic origin by comparing DNA sequences of nuclear and mitochondrial genes indicates Panama disease of banana is caused by fungi with independent evolutionary origins.
Abstract: Panama disease of banana, caused by the fungus Fusarium oxysporum f. sp. cubense, is a serious constraint both to the commercial production of banana and cultivation for subsistence agriculture. Previous work has indicated that F. oxysporum f. sp. cubense consists of several clonal lineages that may be genetically distant. In this study we tested whether lineages of the Panama disease pathogen have a monophyletic origin by comparing DNA sequences of nuclear and mitochondrial genes. DNA sequences were obtained for translation elongation factor 1α and the mitochondrial small subunit ribosomal RNA genes for F. oxysporum strains from banana, pathogenic strains from other hosts and putatively nonpathogenic isolates of F. oxysporum. Cladograms for the two genes were highly concordant and a partition-homogeneity test indicated the two datasets could be combined. The tree inferred from the combined dataset resolved five lineages corresponding to “F. oxysporum f. sp. cubense” with a large dichotomy between two taxa represented by strains most commonly isolated from bananas with Panama disease. The results also demonstrate that the latter two taxa have significantly different chromosome numbers. F. oxysporum isolates collected as nonpathogenic or pathogenic to other hosts that have very similar or identical elongation factor 1α and mitochondrial small subunit genotypes as banana pathogens were shown to cause little or no disease on banana. Taken together, these results indicate Panama disease of banana is caused by fungi with independent evolutionary origins.

1,639 citations

Journal ArticleDOI
TL;DR: An overview of the Panama disease and its causal agent, Fusarium oxysporum f. cubense, is presented in this paper, with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.
Abstract: Banana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the 'Gros Michel'-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.

362 citations

Journal ArticleDOI
TL;DR: Phylogenetic studies indicate that F. oxysporum f.
Abstract: Fusarium wilt of banana (also known as Panama disease) is caused by Fusarium oxysporum f. sp. cubense. Where susceptible cultivars are grown, management is limited to the use of pathogen-free planting stock and clean soils. Resistant genotypes exist for some applications, but resistance is still needed in other situations. Progress has been made with this recalcitrant crop by traditional and nontraditional improvement programs. The disease was first reported in Australia in 1876, but did the greatest damage in export plantations in the western tropics before 1960. A new variant, tropical race 4, threatens the trades that are now based on Cavendish cultivars, and other locally important types such as the plantains. Phylogenetic studies indicate that F. oxysporum f. sp. cubense had several independent evolutionary origins. The significance of these results and the future impact of this disease are discussed.

341 citations

Journal ArticleDOI
TL;DR: Analysis of the combined dataset suggests that two-thirds of the STs might be associated with a single host plant, and revealed that the 26 STs associated with human mycoses were genetically diverse, including several which appear to be nosocomial in origin.

306 citations

Journal ArticleDOI
TL;DR: Banana (Musa spp.) is an important cash and food crop in the tropics and subtropics, but effective biological, chemical and cultural measures are not available, despite a substantial, positive literature on these topics.

221 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A short resumé of each fungus in the Top 10 list and its importance is presented, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark.
Abstract: The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resume of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10.

2,807 citations

Journal ArticleDOI
TL;DR: A simple method is described for designing primer sets that can amplify specific protein-encoding sequences in a wide variety of filamentous ascomycetes.
Abstract: A simple method is described for designing primer sets that can amplify specific protein-encoding sequences in a wide variety of filamentous ascomycetes. Using this technique, we successfully desig...

2,253 citations

Journal ArticleDOI
TL;DR: The present findings do not authenticate the involvement of F. mangiferae in the disease, however hormonal imbalance, most probably ethylene, might be responsible for deformed functional morphology of panicle and a signal transduction mechanism of stress-stimulated ethylene imbalance causing physio-morphological changes in reproductive organs of mango flower and thereby failure of fertilization and fruit set needs to be investigated.
Abstract: Mango malformation is the most important and threatening disease of recent times, primarily because of persistent lacuna in complete understanding of its nature. Diverse Fusarium spp, including F. mangiferae, were found to be associated with the disease. Here, F. mangiferae from mango cv Dashehri was morphologically characterized. Typically, oval-shaped microconidia without septum and crescent-shaped macroconidia with 3-septate were more often observed, whereas not a single chlamydospore was detected. The length and width of micro- and macro-conidia were 7.5, 55, 3.2, and 3.5, respectively. The plant growth regulators such as NAA, GA3, BAP and ethrel were found to induce in vitro germination of conidia of F. mangiferae after 12 h. In contrast, antimalformin silver nitrate (AgNO3) inhibits conidial germination in vitro and none of conidia was germinated beyond 500 ppm, however antimalformin glutathione was highly effective in stimulating conidial germination of F. mangiferae in vitro at > 1000 ppm after 24 h. We observed that the response of F. mangiferae to germinate the conidia in vitro under influence of plant growth regulators and antimalformins is not coincided with earlier findings of reduced disease incidence by exogenous application of these compounds. The present findings do not authenticate the involvement of F. mangiferae in the disease, however hormonal imbalance, most probably ethylene, might be responsible for deformed functional morphology of panicle. Further, a signal transduction mechanism of stress-stimulated ethylene imbalance causing physio-morphological changes in reproductive organs of mango flower and thereby failure of fertilization and fruit set, which needs to be investigated.

2,202 citations

Journal ArticleDOI
TL;DR: A flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure is proposed and pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates.
Abstract: ▪ Abstract We hypothesize that the evolutionary potential of a pathogen population is reflected in its population genetic structure. Pathogen populations with a high evolutionary potential are more likely to overcome genetic resistance than pathogen populations with a low evolutionary potential. We propose a flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure. According to this framework, pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates. The lowest risk pathogens are those with strict asexual reproduction, low potential for gene flow, small effective population sizes, and low mutation rates. We present examples of high-risk and low-risk pathogens. We propose general guidelines for a rational approach to breed durable resistance according to the evolutionary potential of the pathogen.

1,893 citations

Journal ArticleDOI
TL;DR: Testing whether lineages of the Panama disease pathogen have a monophyletic origin by comparing DNA sequences of nuclear and mitochondrial genes indicates Panama disease of banana is caused by fungi with independent evolutionary origins.
Abstract: Panama disease of banana, caused by the fungus Fusarium oxysporum f. sp. cubense, is a serious constraint both to the commercial production of banana and cultivation for subsistence agriculture. Previous work has indicated that F. oxysporum f. sp. cubense consists of several clonal lineages that may be genetically distant. In this study we tested whether lineages of the Panama disease pathogen have a monophyletic origin by comparing DNA sequences of nuclear and mitochondrial genes. DNA sequences were obtained for translation elongation factor 1α and the mitochondrial small subunit ribosomal RNA genes for F. oxysporum strains from banana, pathogenic strains from other hosts and putatively nonpathogenic isolates of F. oxysporum. Cladograms for the two genes were highly concordant and a partition-homogeneity test indicated the two datasets could be combined. The tree inferred from the combined dataset resolved five lineages corresponding to “F. oxysporum f. sp. cubense” with a large dichotomy between two taxa represented by strains most commonly isolated from bananas with Panama disease. The results also demonstrate that the latter two taxa have significantly different chromosome numbers. F. oxysporum isolates collected as nonpathogenic or pathogenic to other hosts that have very similar or identical elongation factor 1α and mitochondrial small subunit genotypes as banana pathogens were shown to cause little or no disease on banana. Taken together, these results indicate Panama disease of banana is caused by fungi with independent evolutionary origins.

1,639 citations