scispace - formally typeset
Search or ask a question
Author

Randy L. Haupt

Bio: Randy L. Haupt is an academic researcher from Colorado School of Mines. The author has contributed to research in topics: Phased array & Antenna (radio). The author has an hindex of 33, co-authored 249 publications receiving 12991 citations. Previous affiliations of Randy L. Haupt include Utah State University & University of Nevada, Reno.


Papers
More filters
Book
05 Jan 1998
TL;DR: Introduction to Optimization The Binary genetic Algorithm The Continuous Parameter Genetic Algorithm Applications An Added Level of Sophistication Advanced Applications Evolutionary Trends Appendix Glossary Index.
Abstract: Introduction to Optimization The Binary Genetic Algorithm The Continuous Parameter Genetic Algorithm Applications An Added Level of Sophistication Advanced Applications Evolutionary Trends Appendix Glossary Index.

4,006 citations

Book
01 Jan 1980
TL;DR: This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject.
Abstract: This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow, as fundamental concepts are introduced with examples before more current developments and techniques are introduced. Problems at the end of each chapter serve both instructors and professional readers by illustrating and extending the material presented in the text. Both students and practicing engineers will easily gain familiarity with the modern contribution that adaptive arrays have to offer practical signal reception systems.

1,601 citations

Journal ArticleDOI
TL;DR: This paper presents how to optimally thin an array using genetic algorithms, which determines which elements are turned off in a periodic array to yield the lowest maximum relative sidelobe level.
Abstract: Large arrays are difficult to thin in order to obtain low sidelobes. Traditional statistical methods of aperiodic array synthesis fall far short of optimum configurations. Traditional optimization methods are not well suited for optimizing a large number of parameters or discrete parameters. This paper presents how to optimally thin an array using genetic algorithms. The genetic algorithm determines which elements are turned off in a periodic array to yield the lowest maximum relative sidelobe level. Simulation results for 200 element linear arrays and 200 element planar arrays are shown. The arrays are thinned to obtain sidelobe levels of less than -20 dB. The linear arrays are also optimized over both scan angle and bandwidth. >

987 citations

Journal ArticleDOI
TL;DR: In this paper, a tutorial on using genetic algorithms to optimize antenna and scattering patterns is presented, and three examples demonstrate how to optimize antennas and backscattering radar-cross-section patterns.
Abstract: This article is a tutorial on using genetic algorithms to optimize antenna and scattering patterns. Genetic algorithms are "global" numerical-optimization methods, patterned after the natural processes of genetic recombination and evolution. The algorithms encode each parameter into binary sequences, called a gene, and a set of genes is a chromosome. These chromosomes undergo natural selection, mating, and mutation, to arrive at the final optimal solution. After providing a detailed explanation of how a genetic algorithm works, and a listing of a MATLAB code, the article presents three examples. These examples demonstrate how to optimize antenna patterns and backscattering radar-cross-section patterns. Finally, additional details about algorithm design are given. >

831 citations

Proceedings ArticleDOI
28 Jun 1993
TL;DR: In this paper, the authors applied genetic algorithms (GAs) to arrive at an optimally thinned array for a 50-element linear array of isotropic point sources.
Abstract: It is shown how to apply genetic algorithms (GAs) to arrive at an optimally thinned array. Consistent GA results from five array thinning optimizations for a 50-element linear array of isotropic point sources are shown. All of the runs are within 0.8dB of one another. A sample far-field pattern for the 50-element array resulting from the GA optimization is shown. The array patterns are optimized for the lowest maximum sidelobe level. It is concluded that a GA is ideal for optimizing the thinning of an array. The bits in a gene correspond to turning the element on or off. Although a GA is slow, it can handle very large problems involving many antenna elements. >

544 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: A new optimization algorithm based on the law of gravity and mass interactions is introduced and the obtained results confirm the high performance of the proposed method in solving various nonlinear functions.

5,501 citations

Book
05 Jan 1998
TL;DR: Introduction to Optimization The Binary genetic Algorithm The Continuous Parameter Genetic Algorithm Applications An Added Level of Sophistication Advanced Applications Evolutionary Trends Appendix Glossary Index.
Abstract: Introduction to Optimization The Binary Genetic Algorithm The Continuous Parameter Genetic Algorithm Applications An Added Level of Sophistication Advanced Applications Evolutionary Trends Appendix Glossary Index.

4,006 citations

Book
30 Nov 1993
TL;DR: Details of Element Pattern and Mutual Impedance Effects for Phased Arrays and Special Array Feeds for Limited Field of View and Wideband Arrays are presented.
Abstract: Phased Arrays in Radar and Communication Systems. Pattern Characteristics and Synthesis of Linear and Planar Arrays. Patterns of Nonplanar Arrays. Elements, Transmission Lines, and Feed Architectures for Phased Arrays. Summary of Element Pattern and Mutual Impedance Effects. Array Error Effects. Special Array Feeds for Limited Field of View and Wideband Arrays.

2,233 citations

Journal ArticleDOI
01 Aug 1997
TL;DR: This paper provides a comprehensive and detailed treatment of different beam-forming schemes, adaptive algorithms to adjust the required weighting on antennas, direction-of-arrival estimation methods-including their performance comparison-and effects of errors on the performance of an array system, as well as schemes to alleviate them.
Abstract: Array processing involves manipulation of signals induced on various antenna elements. Its capabilities of steering nulls to reduce cochannel interferences and pointing independent beams toward various mobiles, as well as its ability to provide estimates of directions of radiating sources, make it attractive to a mobile communications system designer. Array processing is expected to play an important role in fulfilling the increased demands of various mobile communications services. Part I of this paper showed how an array could be utilized in different configurations to improve the performance of mobile communications systems, with references to various studies where feasibility of apt array system for mobile communications is considered. This paper provides a comprehensive and detailed treatment of different beam-forming schemes, adaptive algorithms to adjust the required weighting on antennas, direction-of-arrival estimation methods-including their performance comparison-and effects of errors on the performance of an array system, as well as schemes to alleviate them. This paper brings together almost all aspects of array signal processing.

2,169 citations