scispace - formally typeset
Search or ask a question
Author

Rapeepat Ratasuk

Other affiliations: Nokia Networks, Google
Bio: Rapeepat Ratasuk is an academic researcher from Motorola. The author has contributed to research in topics: Telecommunications link & User equipment. The author has an hindex of 31, co-authored 127 publications receiving 3589 citations. Previous affiliations of Rapeepat Ratasuk include Nokia Networks & Google.


Papers
More filters
Patent
14 Sep 2006
TL;DR: In this article, a system and method for establishing a wireless group call from one of a plurality of communication units to others communication units includes a first step of receiving, from a requesting communication unit a request for a group call with other communication units of the group.
Abstract: A system and method for to establish a wireless group call from one of a plurality of communication units to others communication units includes a first step of receiving, from a requesting communication unit a request for a group call with other communication units of the group. A next step includes allocating a common downlink channel for the group call. A next step includes allocating a dedicated uplink channel for the requesting communication unit. A next step includes switching one of the communication units between the common channel mode and a dedicated channel mode depending upon performance criteria.

35 citations

Proceedings ArticleDOI
01 Sep 2016
TL;DR: Although the design of these channels is based on LTE, there are some differences, particularly in the uplink, with the introduction of subcarrier-level transmission, which enables the achievement of the stated targets for NB-IoT.
Abstract: In 3GPP Rel-13, a narrowband system based on Long Term Evolution (LTE) is being introduced to provide wide-area cellular connectivity for the Internet of Things. This system, named Narrowband Internet of Things (NB-IoT), can be deployed in three different operation modes - (1) stand-alone as a dedicated carrier, (2) in-band within the occupied bandwidth of a wideband LTE carrier, and (3) within the guard-band of an existing LTE carrier. The design targets of NB-IoT include low-cost devices, high coverage (20-dB improvement over GPRS), long device battery life (more than 10 years), and massive capacity. Latency is relaxed although a delay budget of 10 seconds is the target for exception reports. This paper discusses the design and performance of the downlink and uplink data channels. Although the design of these channels is based on LTE, there are some differences, particularly in the uplink, with the introduction of subcarrier-level transmission. The similarities have enabled rapid specification, while the enhancements in the design enable the achievement of the stated targets for NB-IoT.

34 citations

Patent
20 Aug 2003
TL;DR: In this paper, a power control process compares the received signal with a plurality of thresholds, and sends a power controlling signal to the communication device based on the result of the comparison, at least partly dependent on the data rate at which the data bits are transmitted.
Abstract: The present invention relates to methods of operation of a communication device and to corresponding communication devices. In particular the invention relates to a first method of operation of a communication device, wherein some pilot bits associated with data bits are transmitted with a power at least partly dependent on the data rate at which the data bits are transmitted. At the base station, power control is carried out only on pilot bits with constant power, whereas channel estimation is carried out on all pilot bits. The invention also relates to a second method of operation of a communication device wherein all pilot bits associated with data bits are transmitted with one of a plurality of powers, at least partly dependent on the data rate at which the data bits are transmitted. At the base station a power control process compares the received signal with a plurality of thresholds, and sends a power control signal to the communication device based on the result of the comparison.

33 citations

Patent
29 Oct 2007
TL;DR: In this paper, a method and corresponding system for controlling uplink transmission timing in a communication network (100) is described, which comprises of scheduling a mobile device ( 104 ) to transmit a preamble over a physical random access channel.
Abstract: A method and corresponding system for controlling uplink timing in a communication network ( 100 ) is described. The method comprises of scheduling a mobile device ( 104 ) to transmit a preamble over a physical random access channel. The mobile device ( 104 ) is scheduled to transmit the preamble over a physical random access channel at a selected random access slot. The method then includes receiving the preamble transmitted by the scheduled mobile device ( 104 ). The preamble is received over the physical random access channel. The method further comprises measuring a timing offset at which the preamble is received from the scheduled mobile device ( 104 ) and determining a timing adjustment value in uplink transmission timing based on the measured timing offset. The method then comprises transmitting a timing advance command comprising the determined timing adjustment value in a control message to the mobile device ( 104 ) for controlling uplink transmission timing at the mobile device ( 104 ).

32 citations

Patent
11 Feb 2002
TL;DR: In this article, an improved turbo code based incremental redundancy is proposed, which includes a first step of puncturing a data stream for a first transmission to provide a set of first unpunctured trellis sections.
Abstract: An improved turbo code based incremental redundancy includes a first step of puncturing a data stream for a first transmission to provide a set of first unpunctured trellis sections. A next step includes puncturing a data stream for a second transmission to provide a set of second unpunctured trellis sections. A next step includes incremental redundancy combining the first and second transmissions of the trellises to provide non-adjacent first and second unpunctured trellis sections. The above arrangement results in a uniform distribution of punctured and unpunctured bits to provide lower errors.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

Journal ArticleDOI
TL;DR: This paper considers transmit precoding and receiver combining in mmWave systems with large antenna arrays and develops algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware.
Abstract: Millimeter wave (mmWave) signals experience orders-of-magnitude more pathloss than the microwave signals currently used in most wireless applications and all cellular systems. MmWave systems must therefore leverage large antenna arrays, made possible by the decrease in wavelength, to combat pathloss with beamforming gain. Beamforming with multiple data streams, known as precoding, can be used to further improve mmWave spectral efficiency. Both beamforming and precoding are done digitally at baseband in traditional multi-antenna systems. The high cost and power consumption of mixed-signal devices in mmWave systems, however, make analog processing in the RF domain more attractive. This hardware limitation restricts the feasible set of precoders and combiners that can be applied by practical mmWave transceivers. In this paper, we consider transmit precoding and receiver combining in mmWave systems with large antenna arrays. We exploit the spatial structure of mmWave channels to formulate the precoding/combining problem as a sparse reconstruction problem. Using the principle of basis pursuit, we develop algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware. We present numerical results on the performance of the proposed algorithms and show that they allow mmWave systems to approach their unconstrained performance limits, even when transceiver hardware constraints are considered.

3,146 citations

Journal ArticleDOI
TL;DR: A general framework to evaluate the coverage and rate performance in mmWave cellular networks is proposed, and the results show that dense mmWave networks can achieve comparable coverage and much higher data rates than conventional UHF cellular systems, despite the presence of blockages.
Abstract: Millimeter wave (mmWave) holds promise as a carrier frequency for fifth generation cellular networks. Because mmWave signals are sensitive to blockage, prior models for cellular networks operated in the ultra high frequency (UHF) band do not apply to analyze mmWave cellular networks directly. Leveraging concepts from stochastic geometry, this paper proposes a general framework to evaluate the coverage and rate performance in mmWave cellular networks. Using a distance-dependent line-of-site (LOS) probability function, the locations of the LOS and non-LOS base stations are modeled as two independent non-homogeneous Poisson point processes, to which different path loss laws are applied. Based on the proposed framework, expressions for the signal-to-noise-and-interference ratio (SINR) and rate coverage probability are derived. The mmWave coverage and rate performance are examined as a function of the antenna geometry and base station density. The case of dense networks is further analyzed by applying a simplified system model, in which the LOS region of a user is approximated as a fixed LOS ball. The results show that dense mmWave networks can achieve comparable coverage and much higher data rates than conventional UHF cellular systems, despite the presence of blockages. The results suggest that the cell size to achieve the optimal SINR scales with the average size of the area that is LOS to a user.

1,342 citations

Journal ArticleDOI
TL;DR: An overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed, which includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, and heterogeneous networks with emphasis on Type 1 and Type 2 relays.
Abstract: LTE Release 8 is one of the primary broadband technologies based on OFDM, which is currently being commercialized. LTE Release 8, which is mainly deployed in a macro/microcell layout, provides improved system capacity and coverage, high peak data rates, low latency, reduced operating costs, multi-antenna support, flexible bandwidth operation and seamless integration with existing systems. LTE-Advanced (also known as LTE Release 10) significantly enhances the existing LTE Release 8 and supports much higher peak rates, higher throughput and coverage, and lower latencies, resulting in a better user experience. Additionally, LTE Release 10 will support heterogeneous deployments where low-power nodes comprising picocells, femtocells, relays, remote radio heads, and so on are placed in a macrocell layout. The LTE-Advanced features enable one to meet or exceed IMT-Advanced requirements. It may also be noted that LTE Release 9 provides some minor enhancement to LTE Release 8 with respect to the air interface, and includes features like dual-layer beamforming and time-difference- of-arrival-based location techniques. In this article an overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed. This includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, uplink spatial multiplexing including extension to four-layer MIMO, and heterogeneous networks with emphasis on Type 1 and Type 2 relays. Finally, the performance of LTEAdvanced using IMT-A scenarios is presented and compared against IMT-A targets for full buffer and bursty traffic model.

1,044 citations

Journal ArticleDOI
10 May 2016
TL;DR: The security requirements of wireless networks, including their authenticity, confidentiality, integrity, and availability issues, and the state of the art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer are discussed.
Abstract: Due to the broadcast nature of radio propagation, the wireless air interface is open and accessible to both authorized and illegitimate users. This completely differs from a wired network, where communicating devices are physically connected through cables and a node without direct association is unable to access the network for illicit activities. The open communications environment makes wireless transmissions more vulnerable than wired communications to malicious attacks, including both the passive eavesdropping for data interception and the active jamming for disrupting legitimate transmissions. Therefore, this paper is motivated to examine the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity, and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state of the art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. Several physical-layer security techniques are reviewed and compared, including information-theoretic security, artificial-noise-aided security, security-oriented beamforming, diversity-assisted security, and physical-layer key generation approaches. Since a jammer emitting radio signals can readily interfere with the legitimate wireless users, we also introduce the family of various jamming attacks and their countermeasures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer, and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.

948 citations