scispace - formally typeset


Ravi Kumar

Other affiliations: Indian Institutes of Technology
Bio: Ravi Kumar is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topic(s): Ceramic & Crystallite. The author has an hindex of 17, co-authored 85 publication(s) receiving 863 citation(s). Previous affiliations of Ravi Kumar include Indian Institutes of Technology.
More filters

Journal ArticleDOI
C. Swetha1, Ravi Kumar1Institutions (1)
Abstract: Hollow glass microspheres/epoxy foams of different densities were prepared by stir casting process in order to investigate their mechanical properties. The effect of hollow spheres content and wall thickness of the microspheres on the mechanical response of these foams is studied extensively through a series of quasi-static uni-axial compression tests performed at a constant strain rate of 0.001 s−1. It is found that strength of these foams decreases linearly from 105 MPa (for the pure resin) to 25 MPa (for foam reinforced with 60 vol.% hollow microspheres) with increase in hollow spheres content. However, foams prepared using hollow spheres with a higher density possess higher strength than those prepared with a lower one. The energy absorption capacity increases till a critical volume fraction (40 vol.% of the hollow microspheres content) and then decreases. Failure and fracture of these materials occur through shear yielding of the matrix followed by axial splitting beyond a critical volume fraction.

112 citations

Journal ArticleDOI
TL;DR: Interestingly, black zirconia exemplified relatively limited activity albeit presence of oxygen vacancies, which was attributed to the presence of tetragonal phase and possibly, the insufficient creation of new energy states near valence and conduction band towards Fermi energy level.
Abstract: Nanometric powder particles of white zirconia were synthesized through precursor route by the pyrolysis of zirconium (IV) butoxide at varied temperatures in air ranging from 900–1400 °C and were predominantly monoclinic in nature. To control the defect chemistry, the precursor was also pyrolyzed in a reduced atmosphere at 900 °C, eventually resulting in black zirconia. The stabilization of tetragonal phase and observed color change from white to black in samples pyrolyzed under reduced atmosphere was attributed to the creation of oxygen vacancies and disorder. The black and white zirconia produced delineated the influence of crystal structure and oxygen vacancies on the photocatalytic performance. Furthermore, zirconia synthesized at lower temperatures (600 and 800 °C) in air confirmed the detrimental role of tetragonal phase on the degradation behavior of methylene blue dye. High photocatalytic degradation rate for white zirconia was attributed to the presence of increased density of nano-sized pores and low recombination rate of electron-hole pairs as confirmed by PL measurements. Interestingly, black zirconia exemplified relatively limited activity albeit presence of oxygen vacancies. This negative effect was attributed to the presence of tetragonal phase and possibly, the insufficient creation of new energy states near valence and conduction band towards Fermi energy level.

47 citations

Journal ArticleDOI
Abhijeet Lale1, Awin Wasan2, Ravi Kumar2, Philippe Miele1  +2 moreInstitutions (2)
Abstract: Herein, mesoporous 3D silicon carbide (SiC), carbonitride (Si C N) and nitride (Si3N4) structures have been synthesized by nanocasting and pyrolysis using commercial organosilicon polymers as precursors of the different compositions. Detailed characterizations by BET and XRD allowed us to fix the most appropriate parameters to design mesoporous 3D structures with high specific surface areas and high pore volume. Then, the series of 3D structures has been used as supports to grow platinum nanoparticles (Pt NPs) by wet impregnation followed by reduction in hydrogen/argon flow. The Pt-supported mesoporous 3D supports kept the mesoporosity of the virgin supports to be used for catalytic hydrolysis of sodium borohydride (NaBH4). A hydrogen generation rate of 24.2 L min−1 gPt−1 is measured for the Pt-supported mesoporous 3D Si3N4 structure, which is notably higher than the catalytic hydrolysis using Pt-supported mesoporous 3D SiC and Si C N structures. HRTEM investigations demonstrated the homogeneous distribution of Pt NPs over the Si3N4 support.

35 citations

Journal ArticleDOI
Abstract: Friction stir welding (FSW) is a promising technique to join HSLA steels without the problems encountered during fusion based welding processes. In the present work, 3 mm thick HSLA plates were successfully welded using FSW. A tool made of tungsten-rhenium alloy was used in this work. The relationship between microstructure and tensile strength was studied under various welding conditions i.e. change in traverse speed (57–97 mm/min). The microstructure of the weld nugget revealed the presence of upper bainite and fine ferrite phases. The amount of upper bainite reduced with increase in traverse speed. EBSD images showed a reducing trend for grain size. The details of hardness, tensile strength and bending test were reported.

28 citations

Journal ArticleDOI
Nadimpalli Raghukiran1, Ravi Kumar1Institutions (1)
Abstract: Hypereutectic Al– x %Si–0.8Sc alloys ( x =13, 16, 19 and 22 wt%) were produced by spray forming. The microstructures of all the alloys exhibited very fine silicon phase with average size of about 5–10 µm irrespective of the silicon content of the alloy. Transmission electron microscopy revealed the presence of a nano-scale scandium rich phase, identified as AlSi 2 Sc 2 (V-phase) uniformly distributed in the alloy. The presence of V-phase resulted in higher matrix hardness (1.34 GPa) in contrast to 1.04 GPa observed in the case of binary Al–Si alloys by nanoindentation. Isothermal heat treatment at 375 °C revealed insignificant coarsening of silicon phase in both binary and ternary alloys. The Al– x %Si–0.8Sc alloys exhibited higher flow stress and tensile strength in contrast to their binary alloy counterparts which was attributed to the bi-modal size distribution of the strengthening phases in the form of nano-scale V-phase and sub-micron to 10 µm size silicon particles. The pin-on-disk wear tests exhibited appreciable improvement in the wear performance of the relatively low-silicon content ternary alloys over their binary counterparts while the high-silicon content binary and ternary alloys exhibited no much difference in the wear performance.

28 citations

Cited by
More filters

Steven J. Plimpton1Institutions (1)
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

24,496 citations

01 Jan 2007
Abstract: Fogging occurs when moisture condensation takes the form of accumulated droplets with diameters larger than 190 nm or half of the shortest wavelength (380 nm) of visible light. This problem may be effectively addressed by changing the affinity of a material’s surface for water, which can be accomplished via two approaches: i) the superhydrophilic approach, with a water contact angle (CA) less than 5°, and ii) the superhydrophobic approach, with a water CA greater than 150°, and extremely low CA hysteresis. To date, all techniques reported belong to the former category, as they are intended for applications in optical transparent coatings. A well-known example is the use of photocatalytic TiO2 nanoparticle coatings that become superhydrophilic under UV irradiation. Very recently, a capillary effect was skillfully adopted to achieve superhydrophilic properties by constructing 3D nanoporous structures from layer-by-layer assembled nanoparticles. The key to these two “wet”-style antifogging strategies is for micrometer-sized fog drops to rapidly spread into a uniform thin film, which can prevent light scattering and reflection from nucleated droplets. Optical transparency is not an intrinsic property of antifogging coatings even though recently developed antifogging coatings are almost transparent, and the transparency could be achieved by further tuning the nanoparticle size and film thickness. To our knowledge, the antifogging coatings may also be applied to many fields that do not require optical transparency, including, for example, paints for inhibiting swelling and peeling issues and metal surfaces for preventing corrosion. These types of issues, which are caused by adsorption of moisture, are hard to solve by the superhydrophilic approach because of its inherently “wet” nature. Thus, a “dry”-style antifogging strategy, which consists of a novel superhydrophobic technique that can prevent moisture or microscale fog drops from nucleating on a surface, is desired. Recent bionic researches have revealed that the self-cleaning ability of lotus leaves and the striking ability of a water-strider’s legs to walk on water can be attributed to the ideal superhydrophobicity of their surfaces, induced by special microand nanostructures. To date, the biomimetic fabrication of superhydrophobic microand/or nanostructures has attracted considerable interest, and these types of materials can be used for such applications as self-cleaning coatings and stain-resistant textiles. Although a superhydrophobic technique inspired by lotus leaves is expected to be able to solve such fogging problems because the water droplets can not remain on the surface, there are no reports of such antifogging coatings. Very recently, researchers from General Motors have reported that the surfaces of lotus leaves become wet with moisture because the size of the fog drops are at the microscale—so small that they can be easily trapped in the interspaces among micropapillae. Thus, lotuslike surface microstructures are unsuitable for superhydrophobic antifogging coatings, and a new inspiration from nature is desired for solving this problem. In this communication, we report a novel, biological, superhydrophobic antifogging strategy. It was found that the compound eyes of the mosquito C. pipiens possess ideal superhydrophobic properties that provide an effective protective mechanism for maintaining clear vision in a humid habitat. Our research indicates that this unique property is attributed to the smart design of elaborate microand nanostructures: hexagonally non-close-packed (ncp) nipples at the nanoscale prevent microscale fog drops from condensing on the ommatidia surface, and hexagonally close-packed (hcp) ommatidia at the microscale could efficiently prevent fog drops from being trapped in the voids between the ommatidia. We also fabricated artificial compound eyes by using soft lithography and investigated the effects of microand nanostructures on the surface hydrophobicity. These findings could be used to develop novel superhydrophobic antifogging coatings in the near future. It is known that mosquitoes possess excellent vision, which they exploit to locate various resources such as mates, hosts, and resting sites in a watery and dim habitat. To better understand such remarkable abilities, we first investigated the interaction between moisture and the eye surface. An ultrasonic humidifier was used to regulate the relative humidity of the atmosphere and mimic a mist composed of numerous tiny water droplets with diameters less than 10 lm. As the fog was C O M M U N IC A IO N

679 citations

Journal ArticleDOI
Abstract: Hydrogen (H2) production via photocatalytic water splitting is one of the most promising technologies for clean solar energy conversion to emerge in recent decades. The achievement of energy production from water splitting would mean that we could use water as a fuel for future energy need. Among the various photocatalytic materials, titanium dioxide (TiO2) is the dominant and most widely studied because of its exceptional physico-chemical characteristics. Surface decoration of metal/non-metal on TiO2 nanoparticles is an outstanding technique to revamp its electronic properties and enrich the H2 production efficiency. Metal dopants play a vital role in separation of electron-hole pairs on the TiO2 surface during UV/visible/simulated solar light irradiation. In this paper, the basic principles, photocatalytic-reactor design, kinetics, key findings, and the mechanism of metal-doped TiO2 are comprehensively reviewed. We found that Langmuir-Hinshelwood kinetic model is commonly employed by the researchers to demonstrate the rate of H2 production. Copper (Cu), gold (Au) and platinum (Pt) are the most widely studied dopants for TiO2, owing to their superior work function. The metal dopants can amplify the H2 production efficiency of TiO2 through Schottky barrier formation, surface plasmon resonance (SPR), generation of gap states by interaction with TiO2 VB states. The recent advances and important consequences of 2D materials, perovskites, and other novel photocatalysts for H2 generation have also been reviewed.

344 citations

01 Mar 2016
TL;DR: The purpose of this review is to survey the biosynthesis and isolation, and summarize nanotechnology applications of chitin and chitosan ranging from tissue engineering, wound dressings, antimicrobial agents, antiaging cosmetics, and vaccine adjuvants.
Abstract: Chitin is the most abundant aminopolysaccharide polymer occurring in nature, and is the building material that gives strength to the exoskeletons of crustaceans, insects, and the cell walls of fungi. Through enzymatic or chemical deacetylation, chitin can be converted to its most well-known derivative, chitosan. The main natural sources of chitin are shrimp and crab shells, which are an abundant byproduct of the food-processing industry, that provides large quantities of this biopolymer to be used in biomedical applications. In living chitin-synthesizing organisms, the synthesis and degradation of chitin require strict enzymatic control to maintain homeostasis. Chitin synthase, the pivotal enzyme in the chitin synthesis pathway, uses UDP-N-acetylglucosamine (UDPGlcNAc), produce the chitin polymer, whereas, chitinase enzymes degrade chitin. Bacteria are considered as the major mediators of chitin degradation in nature. Chitin and chitosan, owing to their unique biochemical properties such as biocompatibility, biodegradability, non-toxicity, ability to form films, etc, have found many promising biomedical applications. Nanotechnology has also increasingly applied chitin and chitosan-based materials in its most recent achievements. Chitin and chitosan have been widely employed to fabricate polymer scaffolds. Moreover, the use of chitosan to produce designed-nanocarriers and to enable microencapsulation techniques is under increasing investigation for the delivery of drugs, biologics and vaccines. Each application is likely to require uniquely designed chitosan-based nano/micro-particles with specific dimensions and cargo-release characteristics. The ability to reproducibly manufacture chitosan nano/microparticles that can encapsulate protein cargos with high loading efficiencies remains a challenge. Chitosan can be successfully used in solution, as hydrogels and/or nano/microparticles, and (with different degrees of deacetylation) an endless array of derivatives with customized biochemical properties can be prepared. As a result, chitosan is one of the most well-studied biomaterials. The purpose of this review is to survey the biosynthesis and isolation, and summarize nanotechnology applications of chitin and chitosan ranging from tissue engineering, wound dressings, antimicrobial agents, antiaging cosmetics, and vaccine adjuvants.

328 citations

Network Information
Related Authors (5)
Umit B. Demirci

159 papers, 5.6K citations

68% related
Samuel Bernard

163 papers, 3.3K citations

66% related
K.C. Hari Kumar

80 papers, 1.5K citations

57% related
Sergey Vakhrushev

108 papers, 2.8K citations

41% related
S. Sankaran

69 papers, 898 citations

39% related

Author's H-index: 17

No. of papers from the Author in previous years