scispace - formally typeset
Search or ask a question
Author

Raviv Raich

Bio: Raviv Raich is an academic researcher from Oregon State University. The author has contributed to research in topics: Mean squared error & Statistical manifold. The author has an hindex of 29, co-authored 161 publications receiving 3153 citations. Previous affiliations of Raviv Raich include Industrial Research Limited & Georgia Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel set of orthogonal polynomials is introduced, which can be used for PA as well as predistorter modeling and generally yield better PA modeling accuracy as wellAs predistortion linearization performance.
Abstract: The polynomial model is commonly used in power amplifier (PA) modeling and predistorter design. However, the conventional polynomial model exhibits numerical instabilities when higher order terms are included. In this paper, we introduce a novel set of orthogonal polynomials, which can be used for PA as well as predistorter modeling. Theoretically, the conventional and orthogonal polynomial models are "equivalent" and, thus, should behave similarly. In practice, however, the two approaches can perform quite differently in the presence of finite precision processing. Simulation results show that the orthogonal polynomials can alleviate the numerical instability problem associated with the conventional polynomials and generally yield better PA modeling accuracy as well as predistortion linearization performance.

353 citations

Journal ArticleDOI
TL;DR: This work formulates the problem of classifying the set of species present in an audio recording using the multi-instance multi-label (MIML) framework for machine learning, and proposes a MIML bag generator for audio, i.e., an algorithm which transforms an input audio signal into a bag-of-instances representation suitable for use with M IML classifiers.
Abstract: Although field-collected recordings typically contain multiple simultaneously vocalizing birds of different species, acoustic species classification in this setting has received little study so far. This work formulates the problem of classifying the set of species present in an audio recording using the multi-instance multi-label (MIML) framework for machine learning, and proposes a MIML bag generator for audio, i.e., an algorithm which transforms an input audio signal into a bag-of-instances representation suitable for use with MIML classifiers. The proposed representation uses a 2D time-frequency segmentation of the audio signal, which can separate bird sounds that overlap in time. Experiments using audio data containing 13 species collected with unattended omnidirectional microphones in the H. J. Andrews Experimental Forest demonstrate that the proposed methods achieve high accuracy (96.1% true positives/negatives). Automated detection of bird species occurrence using MIML has many potential applications, particularly in long-term monitoring of remote sites, species distribution modeling, and conservation planning.

277 citations

Proceedings ArticleDOI
12 Aug 2012
TL;DR: This work considers the problem of predicting instance labels while learning from data labeled only at the bag level, and proposes Rank-Loss Support Instance Machines, which optimize a regularized rank-loss objective and can be instantiated with different aggregation models connecting instance- level predictions with bag-level predictions.
Abstract: Multi-instance multi-label learning (MIML) is a framework for supervised classification where the objects to be classified are bags of instances associated with multiple labels. For example, an image can be represented as a bag of segments and associated with a list of objects it contains. Prior work on MIML has focused on predicting label sets for previously unseen bags. We instead consider the problem of predicting instance labels while learning from data labeled only at the bag level. We propose Rank-Loss Support Instance Machines, which optimize a regularized rank-loss objective and can be instantiated with different aggregation models connecting instance-level predictions with bag-level predictions. The aggregation models that we consider are equivalent to defining a "support instance" for each bag, which allows efficient optimization of the rank-loss objective using primal sub-gradient descent. Experiments on artificial and real-world datasets show that the proposed methods achieve higher accuracy than other loss functions used in prior work, e.g., Hamming loss, and recent work in ambiguous label classification.

206 citations

Proceedings ArticleDOI
13 May 2002
TL;DR: This paper model the PA as a Wiener system and construct a Hammerstein predistorter, obtained using an indirect learning architecture, and linearization performance is demonstrated on a 3-carrier UMTS signal.
Abstract: Power amplifiers (PAs) are inherently nonlinear devices and are used in virtually all communications systems. Digital baseband predistortion is a highly cost effective way to linearize the PAs, but most existing architectures assume that the PA has a memoryless nonlinearity. For wider bandwidth applications such as WCDMA, PA memory effects can no longer be ignored, and memoryless predistortion has limited effectiveness. In this paper, we model the PA as a Wiener system and construct a Hammerstein predistorter, obtained using an indirect learning architecture. Linearization performance is demonstrated on a 3-carrier UMTS signal.

159 citations

Journal ArticleDOI
TL;DR: A novel set of orthogonal polynomials for baseband Gaussian input to replace the conventional polynmials are presented and it is shown how they alleviate the numerical instability problem associated with theventional polynoms.
Abstract: Power amplifiers are the major source of nonlinearity in communications systems. Such nonlinearity causes spectral regrowth as well as in-band distortion, which leads to adjacent channel interference and increased bit error rate. Polynomials are often used to model the nonlinear power amplifier or its predistortion linearizer. In this paper, we present a novel set of orthogonal polynomials for baseband Gaussian input to replace the conventional polynomials and show how they alleviate the numerical instability problem associated with the conventional polynomials. The orthogonal polynomials also provide an intuitive means of spectral regrowth analysis.

127 citations


Cited by
More filters
01 Jan 2009
TL;DR: The results of the experiments reveal that nonlinear techniques perform well on selected artificial tasks, but that this strong performance does not necessarily extend to real-world tasks.
Abstract: In recent years, a variety of nonlinear dimensionality reduction techniques have been proposed that aim to address the limitations of traditional techniques such as PCA and classical scaling. The paper presents a review and systematic comparison of these techniques. The performances of the nonlinear techniques are investigated on artificial and natural tasks. The results of the experiments reveal that nonlinear techniques perform well on selected artificial tasks, but that this strong performance does not necessarily extend to real-world tasks. The paper explains these results by identifying weaknesses of current nonlinear techniques, and suggests how the performance of nonlinear dimensionality reduction techniques may be improved.

2,141 citations

Journal Article
TL;DR: In this article, the authors explore the effect of dimensionality on the nearest neighbor problem and show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance of the farthest data point.
Abstract: We explore the effect of dimensionality on the nearest neighbor problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance to the farthest data point. To provide a practical perspective, we present empirical results on both real and synthetic data sets that demonstrate that this effect can occur for as few as 10-15 dimensions. These results should not be interpreted to mean that high-dimensional indexing is never meaningful; we illustrate this point by identifying some high-dimensional workloads for which this effect does not occur. However, our results do emphasize that the methodology used almost universally in the database literature to evaluate high-dimensional indexing techniques is flawed, and should be modified. In particular, most such techniques proposed in the literature are not evaluated versus simple linear scan, and are evaluated over workloads for which nearest neighbor is not meaningful. Often, even the reported experiments, when analyzed carefully, show that linear scan would outperform the techniques being proposed on the workloads studied in high (10-15) dimensionality!.

1,992 citations

Journal ArticleDOI
TL;DR: The optimal detector in the Neyman–Pearson sense is developed and analyzed for the statistical MIMO radar and it is shown that the optimal detector consists of noncoherent processing of the receiver sensors' outputs and that for cases of practical interest, detection performance is superior to that obtained through coherent processing.
Abstract: Inspired by recent advances in multiple-input multiple-output (MIMO) communications, this proposal introduces the statistical MIMO radar concept To the authors' knowledge, this is the first time that the statistical MIMO is being proposed for radar The fundamental difference between statistical MIMO and other radar array systems is that the latter seek to maximize the coherent processing gain, while statistical MIMO radar capitalizes on the diversity of target scattering to improve radar performance Coherent processing is made possible by highly correlated signals at the receiver array, whereas in statistical MIMO radar, the signals received by the array elements are uncorrelated Radar targets generally consist of many small elemental scatterers that are fused by the radar waveform and the processing at the receiver, to result in echoes with fluctuating amplitude and phase It is well known that in conventional radar, slow fluctuations of the target radar cross section (RCS) result in target fades that degrade radar performance By spacing the antenna elements at the transmitter and at the receiver such that the target angular spread is manifested, the MIMO radar can exploit the spatial diversity of target scatterers opening the way to a variety of new techniques that can improve radar performance This paper focuses on the application of the target spatial diversity to improve detection performance The optimal detector in the Neyman–Pearson sense is developed and analyzed for the statistical MIMO radar It is shown that the optimal detector consists of noncoherent processing of the receiver sensors' outputs and that for cases of practical interest, detection performance is superior to that obtained through coherent processing An optimal detector invariant to the signal and noise levels is also developed and analyzed In this case as well, statistical MIMO radar provides great improvements over other types of array radars

1,413 citations

Journal ArticleDOI
TL;DR: An overview of wireless location challenges and techniques with a special focus on network-based technologies and applications is provided.
Abstract: Wireless location refers to the geographic coordinates of a mobile subscriber in cellular or wireless local area network (WLAN) environments. Wireless location finding has emerged as an essential public safety feature of cellular systems in response to an order issued by the Federal Communications Commission (FCC) in 1996. The FCC mandate aims to solve a serious public safety problem caused by the fact that, at present, a large proportion of all 911 calls originate from mobile phones, the location of which cannot be determined with the existing technology. However, many difficulties intrinsic to the wireless environment make meeting the FCC objective challenging. These challenges include channel fading, low signal-to-noise ratios (SNRs), multiuser interference, and multipath conditions. In addition to emergency services, there are many other applications for wireless location technology, including monitoring and tracking for security reasons, location sensitive billing, fraud protection, asset tracking, fleet management, intelligent transportation systems, mobile yellow pages, and even cellular system design and management. This article provides an overview of wireless location challenges and techniques with a special focus on network-based technologies and applications.

1,308 citations

Book ChapterDOI
E.R. Davies1
01 Jan 1990
TL;DR: This chapter introduces the subject of statistical pattern recognition (SPR) by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier.
Abstract: This chapter introduces the subject of statistical pattern recognition (SPR). It starts by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier. The concepts of an optimal number of features, representativeness of the training data, and the need to avoid overfitting to the training data are stressed. The chapter shows that methods such as the support vector machine and artificial neural networks are subject to these same training limitations, although each has its advantages. For neural networks, the multilayer perceptron architecture and back-propagation algorithm are described. The chapter distinguishes between supervised and unsupervised learning, demonstrating the advantages of the latter and showing how methods such as clustering and principal components analysis fit into the SPR framework. The chapter also defines the receiver operating characteristic, which allows an optimum balance between false positives and false negatives to be achieved.

1,189 citations