scispace - formally typeset
Search or ask a question
Author

Ray A. Bressan

Bio: Ray A. Bressan is an academic researcher from Purdue University. The author has contributed to research in topics: Arabidopsis & Mutant. The author has an hindex of 100, co-authored 292 publications receiving 32638 citations. Previous affiliations of Ray A. Bressan include King Abdulaziz University & King Abdullah University of Science and Technology.


Papers
More filters
Journal ArticleDOI
01 Jun 2000
TL;DR: Evidence for plant stress signaling systems is summarized, some of which have components analogous to those that regulate osmotic stress responses of yeast, some that presumably function in intercellular coordination or regulation of effector genes in a cell-/tissue-specific context required for tolerance of plants.
Abstract: ▪ Abstract Plant responses to salinity stress are reviewed with emphasis on molecular mechanisms of signal transduction and on the physiological consequences of altered gene expression that affect biochemical reactions downstream of stress sensing. We make extensive use of comparisons with model organisms, halophytic plants, and yeast, which provide a paradigm for many responses to salinity exhibited by stress-sensitive plants. Among biochemical responses, we emphasize osmolyte biosynthesis and function, water flux control, and membrane transport of ions for maintenance and re-establishment of homeostasis. The advances in understanding the effectiveness of stress responses, and distinctions between pathology and adaptive advantage, are increasingly based on transgenic plant and mutant analyses, in particular the analysis of Arabidopsis mutants defective in elements of stress signal transduction pathways. We summarize evidence for plant stress signaling systems, some of which have components analogous to t...

4,596 citations

Journal ArticleDOI
TL;DR: This update will focus principally on Na+ homeostasis in sodic environments; however, discussions of H+, K+, Ca2+, and Cl will be included because of the interrelationship of these ions with Na+Homeostasis.
Abstract: Homeostasis can be defined as the tendency of a cell or an organism to maintain internal steady state, even in response to any environmental perturbation or stimulus tending to disturb normality, because of the coordinate responses of its constituent components. Typically, ions constantly flux in and out of cells in a controlled fashion with net flux adjusted to accommodate cellular requirements, thus creating an ionic homeostasis. When plant cells are exposed to salinity, mediated by high NaCl concentrations, kinetic steady states of ion transport for Na+ and Cland other ions, such as K+ and Ca2+, are disturbed (Binzel et al., 1988). High apoplastic levels of Na+ and Clalter aqueous and ionic thermodynamic equilibria, resulting in hyperosmotic stress, ionic imbalance, and toxicity. Thus, it is vital for the plant to re-establish cellular ion homeostasis for metabolic functioning and growth, that is, to adapt to the saline environment. Comparisons of what have been interpreted to be adaptive responses among various species lead to the conclusion that some salt-tolerant plants have evolved specialized complex mechanisms that allow adaptation to saline stress conditions. In fact, these unique mechanisms, such as salt glands, exist in few plant species and cannot be presumed to be ubiquitously functional for salt adaptation of all plants. However, intrinsically cellular-based mechanisms appear to be common to all genotypes and are a requisite for salt tolerance. Of paramount importance are those mechanisms that function to regulate ion homeostasis while mediating osmotic adjustment through the accumulation and intracellular compartmentation of ions that are predominant in the external environment. In this update we will focus principally on Na+ homeostasis in sodic environments; however, we also include discussions of H+, K+, Ca2+, and Clbecause of the interrelationship of these ions with Na+ homeostasis. Ion transport processes across the plasma membrane and the tonoplast will be emphasized because these are presumed to be most essential for the control of intracellular Na+ uptake and vacuolar compartmentation.

898 citations

Journal ArticleDOI
TL;DR: SIZ1-dependent sumoylation of ICE1 may activate and/or stabilize the protein, facilitating expression of CBF3/DREB1A and repression of MYB15, leading to low temperature tolerance.
Abstract: SIZ1 is a SUMO E3 ligase that facilitates conjugation of SUMO to protein substrates. siz1-2 and siz1-3 T-DNA insertion alleles that caused freezing and chilling sensitivities were complemented genetically by expressing SIZ1, indicating that the SIZ1 is a controller of low temperature adaptation in plants. Cold-induced expression of CBF/DREB1, particularly of CBF3/DREB1A, and of the regulon genes was repressed by siz1. siz1 did not affect expression of ICE1, which encodes a MYC transcription factor that is a controller of CBF3/DREB1A. A K393R substitution in ICE1 [ICE1(K393R)] blocked SIZ1-mediated sumoylation in vitro and in protoplasts identifying the K393 residue as the principal site of SUMO conjugation. SIZ1-dependent sumoylation of ICE1 in protoplasts was moderately induced by cold. Sumoylation of recombinant ICE1 reduced polyubiquitination of the protein in vitro. ICE1(K393R) expression in wild-type plants repressed cold-induced CBF3/DREB1A expression and increased freezing sensitivity. Furthermore, expression of ICE1(K393R) induced transcript accumulation of MYB15, which encodes a MYB transcription factor that is a negative regulator of CBF/DREB1. SIZ1-dependent sumoylation of ICE1 may activate and/or stabilize the protein, facilitating expression of CBF3/DREB1A and repression of MYB15, leading to low temperature tolerance.

685 citations

Journal ArticleDOI
TL;DR: Results indicate that AtSIZ1 is a SUMO E3 ligase and that sumoylation is a control mechanism that acts both negatively and positively on different Pi deficiency responses.
Abstract: Plants sense phosphate (Pi) deficiency and initiate signaling that controls adaptive responses necessary for Pi acquisition. Herein, evidence establishes that AtSIZ1 is a plant small ubiquitin-like modifier (SUMO) E3 ligase and is a focal controller of Pi starvation-dependent responses. T-DNA insertional mutated alleles of AtSIZ1 (At5g60410) cause Arabidopsis to exhibit exaggerated prototypical Pi starvation responses, including cessation of primary root growth, extensive lateral root and root hair development, increase in root/shoot mass ratio, and greater anthocyanin accumulation, even though intracellular Pi levels in siz1 plants were similar to wild type. AtSIZ1 has SUMO E3 ligase activity in vitro, and immunoblot analysis revealed that the protein sumoylation profile is impaired in siz1 plants. AtSIZ1-GFP was localized to nuclear foci. Steadystate transcript abundances of Pi starvation-responsive genes AtPT2, AtPS2, and AtPS3 were moderate but clearly greater in siz1 seedlings than in wild type, where Pi is sufficient. Pi starvation induced the expression of these genes to the same extent in siz1 and wild-type seedlings. However, two other Pi starvation-responsive genes, AtIPS1 and AtRNS1, are induced more slowly in siz1 seedlings by Pi limitation. PHR1, a MYB transcriptional activator of AtIPS1 and AtRNS1, is an AtSIZ1 sumoylation target. These results indicate that AtSIZ1 is a SUMO E3 ligase and that sumoylation is a control mechanism that acts both negatively and positively on different Pi deficiency responses.

601 citations

Journal ArticleDOI
TL;DR: Combinations of ethylene and methyl jasmonate (E/MeJA) synergistically induced members of both groups 1 and 5 of the pathogenesis-related (PR) superfamily of defense genes, which resulted in a synergistic induction of PR-1b and osmotin (PR-5) mRNA accumulation in tobacco seedlings.
Abstract: Combinations of ethylene and methyl jasmonate (E/MeJA) synergistically induced members of both groups 1 and 5 of the pathogenesis-related (PR) superfamily of defense genes. E/MeJA caused a synergistic induction of PR-1b and osmotin (PR-5) mRNA accumulation in tobacco seedlings. E/MeJA also synergistically activated the osmotin promoter fused to a [beta]-glucuronidase marker gene in a tissue-specific manner. The E/MeJA responsiveness of the osmotin promoter was localized on a -248 to +45 fragment that exhibited responsiveness to several other inducers. E/MeJA induction also resulted in osmotin protein accumulation to levels similar to those induced by osmotic stress. Of the several known inducers of the osmotin gene, including salicylic acid (SA), fungal infection is the only other condition known to cause substantial osmotin protein accumulation in Wisconsin 38, a tobacco cultivar that does not respond hypersensitively to tobacco mosaic virus. Based on the ability of the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine to block ethylene induction of PR-1b mRNA accumulation and its inability to block osmotin mRNA induction by ethylene, these two PR gene groups appeared to have at least partially separate signal transduction pathways. Stimulation of osmotin mRNA accumulation by okadaic acid indicated that another protein kinase system is involved in regulation of the osmotin gene. SA, which is known to induce pathogen resistance in tobacco, could not induce the osmotin gene as much as E/MeJA and neither could it induce PR-1b as much as SA and MeJA combined.

590 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level and the role of the HKT gene family in Na(+) exclusion from leaves is increasing.
Abstract: The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na + or Cl − exclusion, and the tolerance of tissue to accumulated Na + or Cl − . Our understanding of the role of the HKT gene family in Na + exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na + accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.

9,966 citations

Journal ArticleDOI
TL;DR: It is important to avoid treatments that induce cell plasmolysis, and to design experiments that distinguish between tolerance of salt and tolerance of water stress, to understand the processes that give rise toolerance of salt, as distinct from tolerance of osmotic stress.
Abstract: Plant responses to salt and water stress have much in common. Salinity reduces the ability of plants to take up water, and this quickly causes reductions in growth rate, along with a suite of metabolic changes identical to those caused by water stress. The initial reduction in shoot growth is probably due to hormonal signals generated by the roots. There may be salt-specific effects that later have an impact on growth; if excessive amounts of salt enter the plant, salt will eventually rise to toxic levels in the older transpiring leaves, causing premature senescence, and reduce the photosynthetic leaf area of the plant to a level that cannot sustain growth. These effects take time to develop. Salttolerant plants differ from salt-sensitive ones in having a low rate of Na + and Cl ‐ transport to leaves, and the ability to compartmentalize these ions in vacuoles to prevent their build-up in cytoplasm or cell walls and thus avoid salt toxicity. In order to understand the processes that give rise to tolerance of salt, as distinct from tolerance of osmotic stress, and to identify genes that control the transport of salt across membranes, it is important to avoid treatments that induce cell plasmolysis, and to design experiments that distinguish between tolerance of salt and tolerance of water stress.

5,868 citations

Journal ArticleDOI
TL;DR: Salt and drought stress signal transduction consists of ionic and osmotic homeostasis signaling pathways, detoxification (i.e., damage control and repair) response pathways, and pathways for growth regulation.
Abstract: Salt and drought stress signal transduction consists of ionic and osmotic homeostasis signaling pathways, detoxification (i.e., damage control and repair) response pathways, and pathways for growth regulation. The ionic aspect of salt stress is signaled via the SOS pathway where a calcium-responsive SOS3-SOS2 protein kinase complex controls the expression and activity of ion transporters such as SOS1. Osmotic stress activates several protein kinases including mitogen-activated kinases, which may mediate osmotic homeostasis and/or detoxification responses. A number of phospholipid systems are activated by osmotic stress, generating a diverse array of messenger molecules, some of which may function upstream of the osmotic stress-activated protein kinases. Abscisic acid biosynthesis is regulated by osmotic stress at multiple steps. Both ABA-dependent and -independent osmotic stress signaling first modify constitutively expressed transcription factors, leading to the expression of early response transcriptional activators, which then activate downstream stress tolerance effector genes.

5,328 citations

Journal ArticleDOI
01 Jun 2000
TL;DR: Evidence for plant stress signaling systems is summarized, some of which have components analogous to those that regulate osmotic stress responses of yeast, some that presumably function in intercellular coordination or regulation of effector genes in a cell-/tissue-specific context required for tolerance of plants.
Abstract: ▪ Abstract Plant responses to salinity stress are reviewed with emphasis on molecular mechanisms of signal transduction and on the physiological consequences of altered gene expression that affect biochemical reactions downstream of stress sensing. We make extensive use of comparisons with model organisms, halophytic plants, and yeast, which provide a paradigm for many responses to salinity exhibited by stress-sensitive plants. Among biochemical responses, we emphasize osmolyte biosynthesis and function, water flux control, and membrane transport of ions for maintenance and re-establishment of homeostasis. The advances in understanding the effectiveness of stress responses, and distinctions between pathology and adaptive advantage, are increasingly based on transgenic plant and mutant analyses, in particular the analysis of Arabidopsis mutants defective in elements of stress signal transduction pathways. We summarize evidence for plant stress signaling systems, some of which have components analogous to t...

4,596 citations

Journal ArticleDOI
TL;DR: In this review article, numerous examples of successful application of these compounds to improve plant stress tolerance are presented and a better understanding of the mechanisms of action of exogenously applied GB and proline is expected to aid their effective utilization in crop production in stress environments.

3,847 citations