scispace - formally typeset
Search or ask a question
Author

Raymond A. Sobel

Bio: Raymond A. Sobel is an academic researcher from Stanford University. The author has contributed to research in topics: Experimental autoimmune encephalomyelitis & T cell. The author has an hindex of 83, co-authored 274 publications receiving 29380 citations. Previous affiliations of Raymond A. Sobel include United States Department of Veterans Affairs & University of California, Davis.


Papers
More filters
Journal ArticleDOI
10 Mar 1995-Cell
TL;DR: Interaction of B 7-1 and B7-2 with shared counterreceptors CD28 and CTLA-4 results in very different outcomes in clinical disease by influencing commitment of precursors to a Th1 or Th2 lineage.

1,766 citations

Journal ArticleDOI
31 Jan 2002-Nature
TL;DR: In vivo administration of antibody to Tim-3 enhances the clinical and pathological severity of experimental autoimmune encephalomyelitis (EAE), a Th1-dependent autoimmune disease, and increases the number and activation level of macrophages.
Abstract: Activation of naive CD4(+) T-helper cells results in the development of at least two distinct effector populations, Th1 and Th2 cells. Th1 cells produce cytokines (interferon (IFN)-gamma, interleukin (IL)-2, tumour-necrosis factor (TNF)-alpha and lymphotoxin) that are commonly associated with cell-mediated immune responses against intracellular pathogens, delayed-type hypersensitivity reactions, and induction of organ-specific autoimmune diseases. Th2 cells produce cytokines (IL-4, IL-10 and IL-13) that are crucial for control of extracellular helminthic infections and promote atopic and allergic diseases. Although much is known about the functions of these two subsets of T-helper cells, there are few known surface molecules that distinguish between them. We report here the identification and characterization of a transmembrane protein, Tim-3, which contains an immunoglobulin and a mucin-like domain and is expressed on differentiated Th1 cells. In vivo administration of antibody to Tim-3 enhances the clinical and pathological severity of experimental autoimmune encephalomyelitis (EAE), a Th1-dependent autoimmune disease, and increases the number and activation level of macrophages. Tim-3 may have an important role in the induction of autoimmune diseases by regulating macrophage activation and/or function.

1,410 citations

Journal ArticleDOI
07 Nov 2002-Nature
TL;DR: It is shown that oral atorvastatin prevented or reversed chronic and relapsing paralysis and has pleiotropic immunomodulatory effects involving both APC and T-cell compartments.
Abstract: Statins, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, which are approved for cholesterol reduction, may also be beneficial in the treatment of inflammatory diseases. Atorvastatin (Lipitor) was tested in chronic and relapsing experimental autoimmune encephalomyelitis, a CD4(+) Th1-mediated central nervous system (CNS) demyelinating disease model of multiple sclerosis. Here we show that oral atorvastatin prevented or reversed chronic and relapsing paralysis. Atorvastatin induced STAT6 phosphorylation and secretion of Th2 cytokines (interleukin (IL)-4, IL-5 and IL-10) and transforming growth factor (TGF)-beta. Conversely, STAT4 phosphorylation was inhibited and secretion of Th1 cytokines (IL-2, IL-12, interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha) was suppressed. Atorvastatin promoted differentiation of Th0 cells into Th2 cells. In adoptive transfer, these Th2 cells protected recipient mice from EAE induction. Atorvastatin reduced CNS infiltration and major histocompatibility complex (MHC) class II expression. Treatment of microglia inhibited IFN-gamma-inducible transcription at multiple MHC class II transactivator (CIITA) promoters and suppressed class II upregulation. Atorvastatin suppressed IFN-gamma-inducible expression of CD40, CD80 and CD86 co-stimulatory molecules. l-Mevalonate, the product of HMG-CoA reductase, reversed atorvastatin's effects on antigen-presenting cells (APC) and T cells. Atorvastatin treatment of either APC or T cells suppressed antigen-specific T-cell activation. Thus, atorvastatin has pleiotropic immunomodulatory effects involving both APC and T-cell compartments. Statins may be beneficial for multiple sclerosis and other Th1-mediated autoimmune diseases.

1,082 citations

Journal ArticleDOI
TL;DR: The authors showed that IL-4 blocked the generation of TGF-beta-induced Foxp3(+) T(reg) cells and instead induced a population of T helper cells that produced IL-9 and IL-10.
Abstract: Transcription factor Foxp3 is critical for generating regulatory T cells (T(reg) cells). Transforming growth factor-beta (TGF-beta) induces Foxp3 and suppressive T(reg) cells from naive T cells, whereas interleukin 6 (IL-6) inhibits the generation of inducible T(reg) cells. Here we show that IL-4 blocked the generation of TGF-beta-induced Foxp3(+) T(reg) cells and instead induced a population of T helper cells that produced IL-9 and IL-10. The IL-9(+)IL-10(+) T cells demonstrated no regulatory properties despite producing abundant IL-10. Adoptive transfer of IL-9(+)IL-10(+) T cells into recombination-activating gene 1-deficient mice induced colitis and peripheral neuritis, the severity of which was aggravated if the IL-9(+)IL-10(+) T cells were transferred with CD45RB(hi) CD4(+) effector T cells. Thus IL-9(+)IL-10(+) T cells lack suppressive function and constitute a distinct population of helper-effector T cells that promote tissue inflammation.

1,046 citations

Journal ArticleDOI
TL;DR: It is found that the production of TGF-β3 by developing Th17 cells was dependent on IL-23, which together with IL-6 induced very pathogenic TH17 cells, which had a molecular signature that defined pathogenic effector TH 17 cells in autoimmune disease.
Abstract: Interleukin 17 (IL-17)-producing helper T cells (T(H)17 cells) are often present at the sites of tissue inflammation in autoimmune diseases, which has led to the conclusion that T(H)17 cells are main drivers of autoimmune tissue injury. However, not all T(H)17 cells are pathogenic; in fact, T(H)17 cells generated with transforming growth factor-β1 (TGF-β1) and IL-6 produce IL-17 but do not readily induce autoimmune disease without further exposure to IL-23. Here we found that the production of TGF-β3 by developing T(H)17 cells was dependent on IL-23, which together with IL-6 induced very pathogenic T(H)17 cells. Moreover, TGF-β3-induced T(H)17 cells were functionally and molecularly distinct from TGF-β1-induced T(H)17 cells and had a molecular signature that defined pathogenic effector T(H)17 cells in autoimmune disease.

980 citations


Cited by
More filters
Journal ArticleDOI
31 Jan 2002-Nature
TL;DR: DNA microarray analysis on primary breast tumours of 117 young patients is used and supervised classification is applied to identify a gene expression signature strongly predictive of a short interval to distant metastases (‘poor prognosis’ signature) in patients without tumour cells in local lymph nodes at diagnosis, providing a strategy to select patients who would benefit from adjuvant therapy.
Abstract: Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour. Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however, 70-80% of patients receiving this treatment would have survived without it. None of the signatures of breast cancer gene expression reported to date allow for patient-tailored therapy strategies. Here we used DNA microarray analysis on primary breast tumours of 117 young patients, and applied supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.

9,664 citations

Journal ArticleDOI
TL;DR: The evidence is recounted that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree.
Abstract: ecent research has shown that inflammation plays a key role in coronary artery disease (CAD) and other manifestations of atherosclerosis. Immune cells dominate early atherosclerotic lesions, their effector molecules accelerate progression of the lesions, and activation of inflammation can elicit acute coronary syndromes. This review highlights the role of inflammation in the pathogenesis of atherosclerotic CAD. It will recount the evidence that atherosclerosis, the main cause of CAD, is an inflammatory disease in which immune mechanisms interact with metabolic risk factors to initiate, propagate, and activate lesions in the arterial tree. A decade ago, the treatment of hypercholesterolemia and hypertension was expected to eliminate CAD by the end of the 20th century. Lately, however, that optimistic prediction has needed revision. Cardiovascular diseases are expected to be the main cause of death globally within the next 15 years owing to a rapidly increasing prevalence in developing countries and eastern Europe and the rising incidence of obesity and diabetes in the Western world. 1 Cardiovascular diseases cause 38 percent of all deaths in North America and are the most common cause of death in European men under 65 years of age and the second most common cause in women. These facts force us to revisit cardiovascular disease and consider new strategies for prediction, prevention, and treatment.

7,551 citations

Journal ArticleDOI
TL;DR: Dendritic cells are antigen-presenting cells with a unique ability to induce primary immune responses and may be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response.
Abstract: Dendritic cells (DCs) are antigen-presenting cells with a unique ability to induce primary immune responses. DCs capture and transfer information from the outside world to the cells of the adaptive immune system. DCs are not only critical for the induction of primary immune responses, but may also be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response. Although our understanding of DC biology is still in its infancy, we are now beginning to use DC-based immunotherapy protocols to elicit immunity against cancer and infectious diseases.

6,758 citations

Journal ArticleDOI
11 May 2006-Nature
TL;DR: It is shown that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ Treg cells induced by TGF-β, and the data demonstrate a dichotomy in thegeneration of pathogenic (TH17) T cells that induce autoimmunity and regulatory (Foxp3+) T Cells that inhibit autoimmune tissue injury.
Abstract: On activation, T cells undergo distinct developmental pathways, attaining specialized properties and effector functions. T-helper (T(H)) cells are traditionally thought to differentiate into T(H)1 and T(H)2 cell subsets. T(H)1 cells are necessary to clear intracellular pathogens and T(H)2 cells are important for clearing extracellular organisms. Recently, a subset of interleukin (IL)-17-producing T (T(H)17) cells distinct from T(H)1 or T(H)2 cells has been described and shown to have a crucial role in the induction of autoimmune tissue injury. In contrast, CD4+CD25+Foxp3+ regulatory T (T(reg)) cells inhibit autoimmunity and protect against tissue injury. Transforming growth factor-beta (TGF-beta) is a critical differentiation factor for the generation of T(reg) cells. Here we show, using mice with a reporter introduced into the endogenous Foxp3 locus, that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ T(reg) cells induced by TGF-beta. We also demonstrate that IL-23 is not the differentiation factor for the generation of T(H)17 cells. Instead, IL-6 and TGF-beta together induce the differentiation of pathogenic T(H)17 cells from naive T cells. Our data demonstrate a dichotomy in the generation of pathogenic (T(H)17) T cells that induce autoimmunity and regulatory (Foxp3+) T cells that inhibit autoimmune tissue injury.

6,643 citations

Journal ArticleDOI
TL;DR: Findings that have advanced the understanding of IL-10 and its receptor are highlighted, as well as its in vivo function in health and disease.
Abstract: Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.

6,308 citations