scispace - formally typeset
Search or ask a question
Author

Raymond J. Dolan

Bio: Raymond J. Dolan is an academic researcher from University College London. The author has contributed to research in topics: Prefrontal cortex & Functional magnetic resonance imaging. The author has an hindex of 196, co-authored 919 publications receiving 138540 citations. Previous affiliations of Raymond J. Dolan include VU University Amsterdam & McGovern Institute for Brain Research.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that amygdala and fusiform encode affective value in a manner that closely approximates a standard computational solution to learning.
Abstract: To monitor the environment for social threat humans must build affective evaluations of others. These evaluations are malleable and to a high degree shaped by responses engendered by specific social encounters. The precise neuronal mechanism by which these evaluations are constructed is poorly understood. We tested a hypothesis that conjoint activity in amygdala and fusiform gyrus would correlate with acquisition of social stimulus value. We tested this using a reinforcement learning algorithm, Q-learning, that assigned values to faces as a function of a history of pairing, or not pairing, with aversive shocks. Behaviourally, we observed a correlation between conditioning induced changes in skin conductance response (SCR) and subjective ratings for likeability of faces. Activity in both amygdala and fusiform gyrus (FG) correlated with the output of the reinforcement learning algorithm parameterized by these ratings. In amygdala, this effect was greater for averted than direct gaze faces. Furthermore, learning-related activity change in these regions correlated with SCR and subjective ratings. We conclude that amygdala and fusiform encode affective value in a manner that closely approximates a standard computational solution to learning.

41 citations

Journal ArticleDOI
TL;DR: It is suggested that an increased expression of psychopathology is closely linked to lower rates of myelin maturation in selective brain tracts over time, and impaired myelin growth in limbic association fibres may serve as a neural marker for emerging mental illness during the course of adolescence and early adulthood.
Abstract: Adolescence is a time period associated with marked brain maturation that coincides with an enhanced risk for onset of psychiatric disorder. White matter tract myelination, a process that continues to unfold throughout adolescence, is reported to be abnormal in several psychiatric disorders. Here, we ask whether psychiatric vulnerability is linked to aberrant developmental myelination trajectories. We assessed a marker of myelin maturation, using magnetisation transfer (MT) imaging, in 10 major white matter tracts. We then investigated its relationship to the expression of a general psychopathology "p-factor" in a longitudinal analysis of 293 healthy participants between the ages of 14 and 24. We observed significant longitudinal MT increase across the full age spectrum in anterior thalamic radiation, hippocampal cingulum, dorsal cingulum and superior longitudinal fasciculus. MT increase in the inferior fronto-occipital fasciculus, inferior longitudinal fasciculus and uncinate fasciculus was pronounced in younger participants but levelled off during the transition into young adulthood. Crucially, longitudinal MT increase in dorsal cingulum and uncinate fasciculus decelerated as a function of mean p-factor scores over the study period. This suggests that an increased expression of psychopathology is closely linked to lower rates of myelin maturation in selective brain tracts over time. Impaired myelin growth in limbic association fibres may serve as a neural marker for emerging mental illness during the course of adolescence and early adulthood.

41 citations

Journal ArticleDOI
TL;DR: Behavioural data is provided showing that the incidental presentation of aversive and appetitive conditioned stimuli can alter subjects’ preferences in an economic task, involving a choice between a safe or gamble option, and it is demonstrated that this conditioned behavioral bias engages the amygdala.

41 citations

Journal ArticleDOI
TL;DR: Within 2 separate experiments, 1 involving an extremely large cohort of 3,247 participants, a dissociation between encoding and delay distractor-filtering is shown, indicating that separate mechanisms may contribute to working memory capacity.
Abstract: The effectiveness of distractor-filtering is a potentially important determinant of working memory capacity (WMC). However, a distinction between the contributions of distractor-filtering at WM encoding as opposed to filtering during maintenance has not been made and the assumption is that these rely on the same mechanism. Within 2 experiments, 1 conducted in the laboratory with 21 participants, and the other played as a game on smartphones (n = 3,247) we measure WMC without distractors, and present distractors during encoding or during the delay period of a WM task to determine performance associated with distraction at encoding and during maintenance. Despite differences in experimental setting and paradigm design between the 2 studies, we show a unique contribution to WMC from both encoding and delay distractor performance in both experiments, while controlling for performance in the absence of distraction. Thus, within 2 separate experiments, 1 involving an extremely large cohort of 3,247 participants, we show a dissociation between encoding and delay distractor-filtering, indicating that separate mechanisms may contribute to WMC.

40 citations

Journal ArticleDOI
12 Apr 2017-PLOS ONE
TL;DR: The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure, and reveal a low hazardous behaviour/low mental illness risk subgroup not previously described.
Abstract: Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed ‘distress’ and five ‘distress independent’ specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits.

40 citations


Cited by
More filters
Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: It is proposed that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them, which provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task.
Abstract: ▪ Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

10,943 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations