scispace - formally typeset
Search or ask a question
Author

Raymond J. Dolan

Bio: Raymond J. Dolan is an academic researcher from University College London. The author has contributed to research in topics: Prefrontal cortex & Functional magnetic resonance imaging. The author has an hindex of 196, co-authored 919 publications receiving 138540 citations. Previous affiliations of Raymond J. Dolan include VU University Amsterdam & McGovern Institute for Brain Research.


Papers
More filters
Journal ArticleDOI
TL;DR: Direct human evidence is provided that the NAcc is a key component of a network engaged in encoding statistics of the sensory environmental and predicted generation of longer latency scalp potentials.
Abstract: Rapid changes in the environment evoke a comparison between expectancy and actual outcome to inform optimal subsequent behavior. The nucleus accumbens (NAcc), a key interface between the hippocampus and neocortical regions, is a candidate region for mediating this comparison. Here, we report event-related potentials obtained from the NAcc using direct intracranial recordings in 5 human participants while they listened to trains of auditory stimuli differing in their degree of deviation from repetitive background stimuli. NAcc recordings revealed an early mismatch signal (50-220 ms) in response to all deviants. NAcc activity in this time window was also sensitive to the statistics of stimulus deviancy, with larger amplitudes as a function of the level of deviancy. Importantly, this NAcc mismatch signal also predicted generation of longer latency scalp potentials (300-400 ms). The results provide direct human evidence that the NAcc is a key component of a network engaged in encoding statistics of the sensory environmental.

19 citations

Journal ArticleDOI
TL;DR: It is found that pain intensity and target-penalty proximity repelled participants’ movement away from pain and that motor execution was influenced not by absolute pain magnitudes but by relative pain differences, a finding that has implications for pain treatment in clinical contexts.
Abstract: Motivational theories of pain highlight its role in people's choices of actions that avoid bodily damage. By contrast, little is known regarding how pain influences action implementation. To explore this less-understood area, we conducted a study in which participants had to rapidly point to a target area to win money while avoiding an overlapping penalty area that would cause pain in their contralateral hand. We found that pain intensity and target-penalty proximity repelled participants' movement away from pain and that motor execution was influenced not by absolute pain magnitudes but by relative pain differences. Our results indicate that the magnitude and probability of pain have a precise role in guiding motor control and that representations of pain that guide action are, at least in part, relative rather than absolute. Additionally, our study shows that the implicit monetary valuation of pain, like many explicit valuations (e.g., patients' use of rating scales in medical contexts), is unstable, a finding that has implications for pain treatment in clinical contexts.

19 citations

Journal ArticleDOI
TL;DR: It is shown that option quality is selectively represented in the inferior frontal gyrus, while option quantity correlates with areas of the intraparietal sulcus that have previously been associated with numerical processing.
Abstract: How organisms learn the value of single stimuli through experience is well described. In many decisions, however, value estimates are computed "on the fly" by combining multiple stimulus attributes. The neural basis of this computation is poorly understood. Here we explore a common scenario in which decision-makers must combine information about quality and quantity to determine the best option. Using fMRI, we examined the neural representation of quality, quantity, and their integration into an integrated subjective value signal in humans of both genders. We found that activity within inferior frontal gyrus (IFG) correlated with offer quality, while activity in the intraparietal sulcus (IPS) specifically correlated with offer quantity. Several brain regions, including the anterior cingulate cortex (ACC), were sensitive to an interaction of quality and quantity. However, the ACC was uniquely activated by quality, quantity, and their interaction, suggesting that this region provides a substrate for flexible computation of value from both quality and quantity. Furthermore, ACC signals across subjects correlated with the strength of quality and quantity signals in IFG and IPS, respectively. ACC tracking of subjective value also correlated with choice predictability. Finally, activity in the ACC was elevated for choice trials, suggesting that ACC provides a nexus for the computation of subjective value in multiattribute decision-making.SIGNIFICANCE STATEMENT Would you prefer three apples or two oranges? Many choices we make each day require us to weigh up the quality and quantity of different outcomes. Using fMRI, we show that option quality is selectively represented in the inferior frontal gyrus, while option quantity correlates with areas of the intraparietal sulcus that have previously been associated with numerical processing. We show that information about the two is integrated into a value signal in the anterior cingulate cortex, and the fidelity of this integration predicts choice predictability. Our results demonstrate how on-the-fly value estimates are computed from multiple attributes in human value-based decision-making.

19 citations

Journal ArticleDOI
TL;DR: It is observed that memory for a target stimulus can be corrupted by distracters in the delay period, in contrast to theoretical predictions, and there is a trend towards a reduced distractibility under conditions of high reward.
Abstract: This work reports an empirical examination of two key issues in theoretical neuroscience: distractibility in the context of working memory (WM) and its reward dependence. While these issues have been examined fruitfully in isolation (e.g. Macoveanu et al. in Biol Cybern 96(4): 407–19, 2007), we address them here in tandem, with a focus on how distractibility and reward interact. In particular, we parameterise an observation model that embodies the nonlinear form of such interactions, as described in a recent neuronal network model (Gruber et al. in J Comput Neurosci 20:153–166, 2006). We observe that memory for a target stimulus can be corrupted by distracters in the delay period. Interestingly, in contrast to our theoretical predictions, this corruption was only partial. Distracters do not simply overwrite target; rather, a compromise is reached between target and distracter. Finally, we observed a trend towards a reduced distractibility under conditions of high reward. We discuss the implications of these findings for theoretical formulations of basal and dopamine (DA)-modulated neural bump- attractor networks of working memory.

19 citations

Journal ArticleDOI
TL;DR: In this paper , a representation-rich approach is proposed to decode task-related representations from spontaneous neural activity, allowing quantification of the representational content and rich dynamics of such activity.
Abstract: In human neuroscience, studies of cognition are rarely grounded in non-task-evoked, 'spontaneous' neural activity. Indeed, studies of spontaneous activity tend to focus predominantly on intrinsic neural patterns (for example, resting-state networks). Taking a 'representation-rich' approach bridges the gap between cognition and resting-state communities: this approach relies on decoding task-related representations from spontaneous neural activity, allowing quantification of the representational content and rich dynamics of such activity. For example, if we know the neural representation of an episodic memory, we can decode its subsequent replay during rest. We argue that such an approach advances cognitive research beyond a focus on immediate task demand and provides insight into the functional relevance of the intrinsic neural pattern (for example, the default mode network). This in turn enables a greater integration between human and animal neuroscience, facilitating experimental testing of theoretical accounts of intrinsic activity, and opening new avenues of research in psychiatry.

19 citations


Cited by
More filters
Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: It is proposed that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them, which provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task.
Abstract: ▪ Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

10,943 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations