scispace - formally typeset
Search or ask a question
Author

Raymond J. Dolan

Bio: Raymond J. Dolan is an academic researcher from University College London. The author has contributed to research in topics: Prefrontal cortex & Functional magnetic resonance imaging. The author has an hindex of 196, co-authored 919 publications receiving 138540 citations. Previous affiliations of Raymond J. Dolan include VU University Amsterdam & McGovern Institute for Brain Research.


Papers
More filters
Journal ArticleDOI
TL;DR: The data suggest that learning in primary reward structures in the human brain correlates with prediction errors in a manner that complies with principles of formal learning theory.
Abstract: Learning occurs when an outcome deviates from expectation (prediction error). According to formal learning theory, the defining paradigm demonstrating the role of prediction errors in learning is the blocking test. Here, a novel stimulus is blocked from learning when it is associated with a fully predicted outcome, presumably because the occurrence of the outcome fails to produce a prediction error. We investigated the role of prediction errors in human reward-directed learning using a blocking paradigm and measured brain activation with functional magnetic resonance imaging. Participants showed blocking of behavioral learning with juice rewards as predicted by learning theory. The medial orbitofrontal cortex and the ventral putamen showed significantly lower responses to blocked, compared with nonblocked, reward-predicting stimuli. In reward-predicting control situations, deactivations in orbitofrontal cortex and ventral putamen occurred at the time of unpredicted reward omissions. Responses in discrete parts of orbitofrontal cortex correlated with the degree of behavioral learning during, and after, the learning phase. These data suggest that learning in primary reward structures in the human brain correlates with prediction errors in a manner that complies with principles of formal learning theory.

194 citations

Journal ArticleDOI
20 Sep 2012-Neuron
TL;DR: It is shown that the brain models the values and choices of others even when these values are currently irrelevant, and neural computations underlying self-referential and social inference are tied together.

194 citations

Journal ArticleDOI
TL;DR: A significant fraction of the variance in subjects’ responses could be explained by the experimentally manipulated changes in average reward rate, suggesting that the impact of average reward levels on action vigor is indeed subject to a dopaminergic influence.

194 citations

Journal ArticleDOI
01 Sep 2019-Brain
TL;DR: How in vivo locus coeruleus imaging can be used as a biomarker for noradrenergic dysfunction in neurodegenerative diseases is described and a strategy for achieving reliable and biologically validated imaging approaches is outlined.
Abstract: Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.

194 citations

Journal ArticleDOI
TL;DR: During anticipation, in the striatum and a lateral region within the substantia nigra/ventral tegmental area (SN/VTA), action representations dominated over valence representations, challenging a conventional and dominant association between these areas and state value representations.
Abstract: The acquisition of reward and the avoidance of punishment could logically be contingent on either emitting or withholding particular actions. However, the separate pathways in the striatum for go and no-go appear to violate this independence, instead coupling affect and effect. Respect for this interdependence has biased many studies of reward and punishment, so potential action-outcome valence interactions during anticipatory phases remain unexplored. In a functional magnetic resonance imaging study with healthy human volunteers, we manipulated subjects' requirement to emit or withhold an action independent from subsequent receipt of reward or avoidance of punishment. During anticipation, in the striatum and a lateral region within the substantia nigra/ventral tegmental area (SN/VTA), action representations dominated over valence representations. Moreover, we did not observe any representation associated with different state values through accumulation of outcomes, challenging a conventional and dominant association between these areas and state value representations. In contrast, a more medial sector of the SN/VTA responded preferentially to valence, with opposite signs depending on whether action was anticipated to be emitted or withheld. This dominant influence of action requires an enriched notion of opponency between reward and punishment.

193 citations


Cited by
More filters
Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: It is proposed that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them, which provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task.
Abstract: ▪ Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

10,943 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations