scispace - formally typeset
Search or ask a question
Author

Raymond J. Mooney

Bio: Raymond J. Mooney is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Natural language & Parsing. The author has an hindex of 86, co-authored 308 publications receiving 32776 citations. Previous affiliations of Raymond J. Mooney include University of Illinois at Urbana–Champaign.


Papers
More filters
Proceedings ArticleDOI
01 Aug 2021
TL;DR: In this article, the authors introduce a new crowd-sourced dataset that consists of more than 30k questions and free-form answers concerning why characters in short narratives perform the actions described.
Abstract: Answering questions about why characters perform certain actions is central to understanding and reasoning about narratives. Despite recent progress in QA, it is not clear if existing models have the ability to answer "why" questions that may require commonsense knowledge external to the input narrative. In this work, we introduce TellMeWhy, a new crowd-sourced dataset that consists of more than 30k questions and free-form answers concerning why characters in short narratives perform the actions described. For a third of this dataset, the answers are not present within the narrative. Given the limitations of automated evaluation for this task, we also present a systematized human evaluation interface for this dataset. Our evaluation of state-of-the-art models show that they are far below human performance on answering such questions. They are especially worse on questions whose answers are external to the narrative, thus providing a challenge for future QA and narrative understanding research.
11 Jul 2023
TL;DR: In this paper , the authors proposed a method to automatically annotate natural language explanations to \textit{} pairs, which can generate a structured solution explanation for the problem containing descriptions and analysis.
Abstract: In this paper, we approach competitive-level programming problem-solving as a composite task of reasoning and code generation. We propose a novel method to automatically annotate natural language explanations to \textit{} pairs. We show that despite poor performance in solving competitive-level programming problems, state-of-the-art LLMs exhibit a strong capacity in describing and explaining solutions. Our explanation generation methodology can generate a structured solution explanation for the problem containing descriptions and analysis. To evaluate the quality of the annotated explanations, we examine their effectiveness in two aspects: 1) satisfying the human programming expert who authored the oracle solution, and 2) aiding LLMs in solving problems more effectively. The experimental results on the CodeContests dataset demonstrate that while LLM GPT3.5's and GPT-4's abilities in describing the solution are comparable, GPT-4 shows a better understanding of the key idea behind the solution.
Proceedings ArticleDOI
22 May 2023
TL;DR: The authors proposed a clause-level edit model to improve the accuracy of text-to-SQL parsing, which is based on the pre-training corpora of language models of code.
Abstract: Despite recent progress in text-to-SQL parsing, current semantic parsers are still not accurate enough for practical use. In this paper, we investigate how to build automatic text-to-SQL error correction models. Noticing that token-level edits are out of context and sometimes ambiguous, we propose building clause-level edit models instead. Besides, while most language models of code are not specifically pre-trained for SQL, they know common data structures and their operations in programming languages such as Python. Thus, we propose a novel representation for SQL queries and their edits that adheres more closely to the pre-training corpora of language models of code. Our error correction model improves the exact set match accuracy of different parsers by 2.4-6.5 and obtains up to 4.3 point absolute improvement over two strong baselines.
TL;DR: This paper investigated the performance of multiple models in an effort to analyse whether domain specific pretraining helps model performance, and investigated why even state-of-the-art models find this task so challenging, and whether domain-specific pretraining can help.
Abstract: A rise in the circulation of memes has led to the spread of a new form of multimodal hateful content. Unfortunately, the degree of hate women receive on the internet is disproportionately skewed against them. This, combined with the fact that multimodal misogyny is more challenging to detect as opposed to traditional text-based misogyny, signifies that the task of identifying misogynistic memes online is one of utmost importance. To this end, the MAMI dataset was released, consisting of 12000 memes annotated for misogyny and four sub-classes of misogyny - shame, objectification, violence and stereotype. While this balanced dataset is widely cited, we find that the task itself remains largely unsolved. Thus, in our work, we investigate the performance of multiple models in an effort to analyse whether domain specific pretraining helps model performance. We also investigate why even state of the art models find this task so challenging, and whether domain-specific pretraining can help. Our results show that pretraining BERT on hateful memes and leveraging an attention based approach with ViT outperforms state of the art models by more than 10%. Further, we provide insight into why these models may be struggling with this task with an extensive qualitative analysis of random samples from the test set.
Posted Content
TL;DR: Huang et al. as discussed by the authors proposed Hidden State Guidance (HSG) to match the hidden states in the caption decoder to those in a teacher decoder trained on an easier task of autoencoding the captions conditioned on the image.
Abstract: Most RNN-based image captioning models receive supervision on the output words to mimic human captions. Therefore, the hidden states can only receive noisy gradient signals via layers of back-propagation through time, leading to less accurate generated captions. Consequently, we propose a novel framework, Hidden State Guidance (HSG), that matches the hidden states in the caption decoder to those in a teacher decoder trained on an easier task of autoencoding the captions conditioned on the image. During training with the REINFORCE algorithm, the conventional rewards are sentence-based evaluation metrics equally distributed to each generated word, no matter their relevance. HSG provides a word-level reward that helps the model learn better hidden representations. Experimental results demonstrate that HSG clearly outperforms various state-of-the-art caption decoders using either raw images or detected objects as inputs.

Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

Journal ArticleDOI
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

18,616 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations