scispace - formally typeset
Search or ask a question
Author

Raymond K. Walters

Other affiliations: Utrecht University, Broad Institute, University of Notre Dame  ...read more
Bio: Raymond K. Walters is an academic researcher from Harvard University. The author has contributed to research in topics: Genome-wide association study & Population. The author has an hindex of 31, co-authored 76 publications receiving 11687 citations. Previous affiliations of Raymond K. Walters include Utrecht University & Broad Institute.


Papers
More filters
Journal ArticleDOI
27 May 2020-Nature
TL;DR: A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.
Abstract: Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases. A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.

4,913 citations

Journal ArticleDOI
James J. Lee1, Robbee Wedow2, Aysu Okbay3, Edward Kong4, Omeed Maghzian4, Meghan Zacher4, Tuan Anh Nguyen-Viet5, Peter Bowers4, Julia Sidorenko6, Julia Sidorenko7, Richard Karlsson Linnér8, Richard Karlsson Linnér3, Mark Alan Fontana9, Mark Alan Fontana5, Tushar Kundu5, Chanwook Lee4, Hui Li4, Ruoxi Li5, Rebecca Royer5, Pascal Timshel10, Pascal Timshel11, Raymond K. Walters12, Raymond K. Walters4, Emily A. Willoughby1, Loic Yengo7, Maris Alver6, Yanchun Bao13, David W. Clark14, Felix R. Day15, Nicholas A. Furlotte, Peter K. Joshi14, Peter K. Joshi16, Kathryn E. Kemper7, Aaron Kleinman, Claudia Langenberg15, Reedik Mägi6, Joey W. Trampush5, Shefali S. Verma17, Yang Wu7, Max Lam, Jing Hua Zhao15, Zhili Zheng7, Zhili Zheng18, Jason D. Boardman2, Harry Campbell14, Jeremy Freese19, Kathleen Mullan Harris20, Caroline Hayward14, Pamela Herd21, Pamela Herd13, Meena Kumari13, Todd Lencz22, Todd Lencz23, Jian'an Luan15, Anil K. Malhotra23, Anil K. Malhotra22, Andres Metspalu6, Lili Milani6, Ken K. Ong15, John R. B. Perry15, David J. Porteous14, Marylyn D. Ritchie17, Melissa C. Smart14, Blair H. Smith24, Joyce Y. Tung, Nicholas J. Wareham15, James F. Wilson14, Jonathan P. Beauchamp25, Dalton Conley26, Tõnu Esko6, Steven F. Lehrer27, Steven F. Lehrer28, Steven F. Lehrer29, Patrik K. E. Magnusson30, Sven Oskarsson31, Tune H. Pers10, Tune H. Pers11, Matthew R. Robinson7, Matthew R. Robinson32, Kevin Thom33, Chelsea Watson5, Christopher F. Chabris17, Michelle N. Meyer17, David Laibson4, Jian Yang7, Magnus Johannesson34, Philipp Koellinger3, Philipp Koellinger8, Patrick Turley4, Patrick Turley12, Peter M. Visscher7, Daniel J. Benjamin5, Daniel J. Benjamin27, David Cesarini27, David Cesarini33 
TL;DR: A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11–13% of the variance ineducational attainment and 7–10% ofthe variance in cognitive performance, which substantially increases the utility ofpolygenic scores as tools in research.
Abstract: Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1 million individuals and identify 1,271 independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10 independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11-13% of the variance in educational attainment and 7-10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research.

1,658 citations

Journal ArticleDOI
Ditte Demontis1, Ditte Demontis2, Raymond K. Walters3, Raymond K. Walters4, Joanna Martin5, Joanna Martin3, Joanna Martin6, Manuel Mattheisen, Thomas Damm Als2, Thomas Damm Als1, Esben Agerbo1, Esben Agerbo2, Gisli Baldursson, Rich Belliveau3, Jonas Bybjerg-Grauholm2, Jonas Bybjerg-Grauholm7, Marie Bækvad-Hansen7, Marie Bækvad-Hansen2, Felecia Cerrato3, Kimberly Chambert3, Claire Churchhouse4, Claire Churchhouse3, Ashley Dumont3, Nicholas Eriksson, Michael J. Gandal, Jacqueline I. Goldstein4, Jacqueline I. Goldstein3, Katrina L. Grasby8, Jakob Grove, Olafur O Gudmundsson9, Olafur O Gudmundsson10, Christine Søholm Hansen7, Christine Søholm Hansen11, Christine Søholm Hansen2, Mads E. Hauberg2, Mads E. Hauberg1, Mads V. Hollegaard2, Mads V. Hollegaard7, Daniel P. Howrigan3, Daniel P. Howrigan4, Hailiang Huang3, Hailiang Huang4, Julian Maller3, Alicia R. Martin3, Alicia R. Martin4, Nicholas G. Martin8, Jennifer L. Moran3, Jonatan Pallesen2, Jonatan Pallesen1, Duncan S. Palmer4, Duncan S. Palmer3, Carsten Bøcker Pedersen1, Carsten Bøcker Pedersen2, Marianne Giørtz Pedersen2, Marianne Giørtz Pedersen1, Timothy Poterba3, Timothy Poterba4, Jesper Buchhave Poulsen2, Jesper Buchhave Poulsen7, Stephan Ripke3, Stephan Ripke12, Stephan Ripke4, Elise B. Robinson4, F. Kyle Satterstrom4, F. Kyle Satterstrom3, Hreinn Stefansson10, Christine Stevens3, Patrick Turley4, Patrick Turley3, G. Bragi Walters9, G. Bragi Walters10, Hyejung Won13, Hyejung Won14, Margaret J. Wright15, Ole A. Andreassen16, Philip Asherson17, Christie L. Burton18, Dorret I. Boomsma19, Bru Cormand, Søren Dalsgaard1, Barbara Franke20, Joel Gelernter21, Joel Gelernter22, Daniel H. Geschwind13, Daniel H. Geschwind14, Hakon Hakonarson23, Jan Haavik24, Jan Haavik25, Henry R. Kranzler22, Henry R. Kranzler26, Jonna Kuntsi17, Kate Langley5, Klaus-Peter Lesch27, Klaus-Peter Lesch28, Klaus-Peter Lesch29, Christel M. Middeldorp15, Christel M. Middeldorp19, Andreas Reif30, Luis Augusto Rohde31, Panos Roussos, Russell Schachar18, Pamela Sklar32, Edmund J.S. Sonuga-Barke17, Patrick F. Sullivan6, Patrick F. Sullivan33, Anita Thapar5, Joyce Y. Tung, Irwin D. Waldman34, Sarah E. Medland8, Kari Stefansson9, Kari Stefansson10, Merete Nordentoft35, Merete Nordentoft2, David M. Hougaard7, David M. Hougaard2, Thomas Werge35, Thomas Werge11, Thomas Werge2, Ole Mors36, Ole Mors2, Preben Bo Mortensen, Mark J. Daly, Stephen V. Faraone37, Anders D. Børglum2, Anders D. Børglum1, Benjamin M. Neale4, Benjamin M. Neale3 
TL;DR: A genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls identifies variants surpassing genome- wide significance in 12 independent loci and implicates neurodevelopmental pathways and conserved regions of the genome as being involved in underlying ADHD biology.
Abstract: Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits.

1,436 citations

Journal ArticleDOI
22 Jun 2018-Science
TL;DR: It is demonstrated that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine, and it is shown that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures.
Abstract: Disorders of the brain can exhibit considerable epidemiological comorbidity and often share symptoms, provoking debate about their etiologic overlap. We quantified the genetic sharing of 25 brain disorders from genome-wide association studies of 265,218 patients and 784,643 control participants and assessed their relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders share common variant risk, whereas neurological disorders appear more distinct from one another and from the psychiatric disorders. We also identified significant sharing between disorders and a number of brain phenotypes, including cognitive measures. Further, we conducted simulations to explore how statistical power, diagnostic misclassification, and phenotypic heterogeneity affect genetic correlations. These results highlight the importance of common genetic variation as a risk factor for brain disorders and the value of heritability-based methods in understanding their etiology.

1,357 citations

Journal ArticleDOI
06 Feb 2020-Cell
TL;DR: The largest exome sequencing study of autism spectrum disorder (ASD) to date, using an enhanced analytical framework to integrate de novo and case-control rare variation, identifies 102 risk genes at a false discovery rate of 0.1 or less, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.

1,169 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Book ChapterDOI
01 Jan 2010

5,842 citations

Journal ArticleDOI
27 May 2020-Nature
TL;DR: A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.
Abstract: Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases. A catalogue of predicted loss-of-function variants in 125,748 whole-exome and 15,708 whole-genome sequencing datasets from the Genome Aggregation Database (gnomAD) reveals the spectrum of mutational constraints that affect these human protein-coding genes.

4,913 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations