scispace - formally typeset
Search or ask a question
Author

Rebecca Dias

Other affiliations: University of Cambridge, Lundbeck
Bio: Rebecca Dias is an academic researcher from Pfizer. The author has contributed to research in topics: Prefrontal cortex & Consumer neuroscience. The author has an hindex of 10, co-authored 12 publications receiving 2989 citations. Previous affiliations of Rebecca Dias include University of Cambridge & Lundbeck.

Papers
More filters
Journal ArticleDOI
07 Mar 1996-Nature
TL;DR: It is demonstrated that disinhibition, or a loss of inhibitory control, can be selective for particular cognitive functions and that different regions of the prefrontal cortex provide inhibitory Control in different aspects of cognitive processing.
Abstract: The prefrontal cortex is implicated in such human characteristics as volition, planning, abstract reasoning and affect. Frontal-lobe damage can cause disinhibition such that the behaviour of a subject is guided by previously acquired responses that are inappropriate to the current situation. Here we demonstrate that disinhibition, or a loss of inhibitory control, can be selective for particular cognitive functions and that different regions of the prefrontal cortex provide inhibitory control in different aspects of cognitive processing. Thus, whereas damage to the lateral prefrontal cortex (Brodmann's area 9) in monkeys causes a loss of inhibitory control in attentional selection, damage to the orbito-frontal cortex in monkeys causes a loss of inhibitory control in 'affective' processing, thereby impairing the ability to alter behaviour in response to fluctuations in the emotional significance of stimuli. These findings not only support the view that the prefrontal cortex has multiple functions, but also provide evidence for the distribution of different cognitive functions within specific regions of prefrontal cortex.

1,503 citations

Journal ArticleDOI
TL;DR: It is shown that mechanisms of inhibitory control and “on-line” processing are independent within the prefrontal cortex, and impairments in inhibitoryControl induced by prefrontal damage are restricted to novel situations, and those prefrontal areas involved in the suppression of previously established response sets are not involved in their acquisition.
Abstract: Attentional set-shifting and discrimination reversal are sensitive to prefrontal damage in the marmoset in a manner qualitatively similar to that seen in man and Old World monkeys, respectively (Dias et al., 1996b). Preliminary findings have demonstrated that although lateral but not orbital prefrontal cortex is the critical locus in shifting an attentional set between perceptual dimensions, orbital but not lateral prefrontal cortex is the critical locus in reversing a stimulus-reward association within a particular perceptual dimension (Dias et al., 1996a). The present study presents this analysis in full and extends the results in three main ways by demonstrating that (1) mechanisms of inhibitory control and "on-line" processing are independent within the prefrontal cortex, (2) impairments in inhibitory control induced by prefrontal damage are restricted to novel situations, and (3) those prefrontal areas involved in the suppression of previously established response sets are not involved in the acquisition of such response sets. These findings suggest that inhibitory control is a general process that operates across functionally distinct regions within the prefrontal cortex. Although damage to lateral prefrontal cortex causes a loss of inhibitory control in attentional selection, damage to orbitofrontal cortex causes a loss of inhibitory control in affective processing. These findings provide an explanation for the apparent discrepancy between human and nonhuman primate studies in which disinhibition as measured on the Wisconsin Card Sort Test is associated with dorsolateral prefrontal damage, whereas disinhibition as measured on discrimination reversal is associated with orbitofrontal damage.

545 citations

Journal ArticleDOI
TL;DR: It is demonstrated, for the first time, that lesions of the prefrontal cortex in monkeys produce a qualitatively similar impairment in attentional set-shifting to that seen following prefrontal cortical damage in humans.
Abstract: Using a primate analogue of the Wisconsin Card Sort Test, this study demonstrated, for the first time, that lesions of the prefrontal cortex in monkeys produce a qualitatively similar impairment in attentional set-shifting to that seen following prefrontal cortical damage in humans. Although damage to the prefrontal cortex did not disrupt the ability of marmosets, a New World monkey, to maintain an attentional set, it did disrupt their ability to shift an attentional set. It also impaired their performance on discrimination reversal, object retrieval, and spatial delayed response, consistent with the effects of prefrontal damage in Old World monkeys. Comparison of the cognitive processes underlying discrimination reversal, object retrieval, and attentional set-shifting reveals the various types of inhibitory control provided by the prefrontal cortex.

454 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a lesions of the ascending monoamine projections to the pre-frontal cortex is not always synonymous with a lesion of the prefrontal cortex itself and thereby challenge existing concepts concerning the neuromodulation of prefrontal cognitive function.
Abstract: Damage to the prefrontal cortex disrupts the performance of self-ordered sequencing tasks, although the precise mechanisms by which this effect occurs is unclear. Active working memory, inhibitory control, and the ability to generate and perform a sequence of responses are all putative cognitive abilities that may be responsible for the impaired performance that results from disruption of prefrontal processing. In addition, the neurochemical substrates underlying prefrontal cognitive function are not well understood, although active working memory appears to depend upon an intact mesocortical dopamine system. The present experiments were therefore designed to evaluate explicitly the contribution of each of these abilities to successful performance of a novel spatial self-ordered sequencing task and to examine the contribution of the prefrontal cortex and its dopamine innervation to each ability in turn. Excitotoxic lesions of the prefrontal cortex of the common marmoset profoundly impaired the performance of the self-ordered sequencing task and induced robust perseverative responding. Task manipulations that precluded perseveration ameliorated the effect of this lesion and revealed that the ability to generate and perform sequences of responses was unaffected by excitotoxic damage to prefrontal cortex. In contrast, large dopamine and noradrenaline depletions within the same areas of prefrontal cortex had no effect on any aspect of the self-ordered task but did impair the acquisition of an active working memory task, spatial delayed response, to the same degree as the excitotoxic lesion. These results demonstrate that a lesion of the ascending monoamine projections to the prefrontal cortex is not always synonymous with a lesion of the prefrontal cortex itself and thereby challenge existing concepts concerning the neuromodulation of prefrontal cognitive function.

222 citations

Journal ArticleDOI
TL;DR: Comparison of the effects of excitotoxic lesions of the orbitofrontal and lateral prefrontal cortex were examined on the performance of common marmosets on a detour reaching task to provide evidence for a clear distinction in the level of control over responding exerted by the orbito-lateral prefrontal cortex.
Abstract: To gain insight into the nature and neural specificity of the relationship between simple problem solving, inhibitory control and prefrontal cortex, comparison of the effects of excitotoxic lesions of the orbitofrontal and lateral prefrontal cortex were examined on the performance of common marmosets on a detour reaching task. Monkeys were required to inhibit reaching directly for food reward in a transparent box and instead make a detour reach around to the side of the box either having had (i) no prior experience on the task (experiment 1) or (ii) previous experience in reaching around the sides of an opaque box (experiment 2). Whilst monkeys with orbitofrontal lesions had difficulty in inhibiting direct reaches to visible food reward (experiment 1), they could resist this prepotent response tendency following extensive prior experience of detour reaching with an opaque box (experiment 2). In marked contrast, monkeys with lateral prefrontal lesions exhibited no difficulty in inhibiting reaching to visible food reward or acquiring detour reaching per se (experiment 1). However, having been given the opportunity to acquire an efficient detour reaching strategy to hidden food reward these lateral prefrontal lesioned monkeys were impaired at transferring this strategy to the new context in which the food reward was made visible (experiment 2). This double dissociation between the effects of orbitofrontal and lateral prefrontal lesions on detour reaching provides evidence for a clear distinction in the level of control over responding exerted by the orbitofrontal and lateral prefrontal cortex, consistent with hierarchical ordering of response control processes within prefrontal cortex.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is proposed that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them, which provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task.
Abstract: ▪ Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

10,943 citations

Journal ArticleDOI
TL;DR: Developmental changes in prefrontal cortex and limbic brain regions of adolescents across a variety of species, alterations that include an apparent shift in the balance between mesocortical and mesolimbic dopamine systems likely contribute to the unique characteristics of adolescence.

4,985 citations

Journal ArticleDOI
28 Feb 1997-Science
TL;DR: The results suggest that, in normal individuals, nonconscious biases guide behavior before conscious knowledge does, and without the help of such biases, overt knowledge may be insufficient to ensure advantageous behavior.
Abstract: Deciding advantageously in a complex situation is thought to require overt reasoning on declarative knowledge, namely, on facts pertaining to premises, options for action, and outcomes of actions that embody the pertinent previous experience. An alternative possibility was investigated: that overt reasoning is preceded by a nonconscious biasing step that uses neural systems other than those that support declarative knowledge. Normal participants and patients with prefrontal damage and decision-making defects performed a gambling task in which behavioral, psychophysiological, and self-account measures were obtained in parallel. Normals began to choose advantageously before they realized which strategy worked best, whereas prefrontal patients continued to choose disadvantageously even after they knew the correct strategy. Moreover, normals began to generate anticipatory skin conductance responses (SCRs) whenever they pondered a choice that turned out to be risky, before they knew explicitly that it was a risky choice, whereas patients never developed anticipatory SCRs, although some eventually realized which choices were risky. The results suggest that, in normal individuals, nonconscious biases guide behavior before conscious knowledge does. Without the help of such biases, overt knowledge may be insufficient to ensure advantageous behavior.

3,265 citations

Journal ArticleDOI
TL;DR: The somatic marker hypothesis provides a systems-level neuroanatomical and cognitive framework for decisionMaking and the influence on it by emotion and the relationship between emotion, decision making and other cognitive functions of the frontal lobe, namely working memory is reviewed.
Abstract: The somatic marker hypothesis provides a systems-level neuroanatomical and cognitive framework for decision making and the influence on it by emotion. The key idea of this hypothesis is that decision making is a process that is influenced by marker signals that arise in bioregulatory processes, including those that express themselves in emotions and feelings. This influence can occur at multiple levels of operation, some of which occur consciously and some of which occur non-consciously. Here we review studies that confirm various predictions from the hypothesis. The orbitofrontal cortex represents one critical structure in a neural system subserving decision making. Decision making is not mediated by the orbitofrontal cortex alone, but arises from large-scale systems that include other cortical and subcortical components. Such structures include the amygdala, the somatosensory/insular cortices and the peripheral nervous system. Here we focus only on the role of the orbitofrontal cortex in decision making and emotional processing, and the relationship between emotion, decision making and other cognitive functions of the frontal lobe, namely working memory.

3,250 citations

Journal ArticleDOI
TL;DR: The authors conducted a quantitative meta-analysis of 668 sets of activation coordinates in Talairach space reported in 24 primary studies of n-back task variants manipulating process (location vs. identity monitoring) and content (verbal or nonverbal) of working memory.
Abstract: One of the most popular experimental paradigms for functional neuroimaging studies of working memory has been the n-back task, in which subjects are asked to monitor the identity or location of a series of verbal or nonverbal stimuli and to indicate when the currently presented stimulus is the same as the one presented n trials previously. We conducted a quantitative meta-analysis of 668 sets of activation coordinates in Talairach space reported in 24 primary studies of n-back task variants manipulating process (location vs. identity monitoring) and content (verbal or nonverbal) of working memory. We found the following cortical regions were activated robustly (voxelwise false discovery rate = 1%): lateral premotor cortex; dorsal cingulate and medial premotor cortex; dorsolateral and ventrolateral prefrontal cortex; frontal poles; and medial and lateral posterior parietal cortex. Subsidiary meta-analyses based on appropriate subsets of the primary data demonstrated broadly similar activation patterns for identity monitoring of verbal stimuli and both location and identity monitoring of nonverbal stimuli. There was also some evidence for distinct frontoparietal activation patterns in response to different task variants. The functional specializations of each of the major cortical components in the generic large-scale frontoparietal system are discussed. We conclude that quantitative meta-analysis can be a powerful tool for combining results of multiple primary studies reported in Talairach space. Here, it provides evidence both for broadly consistent activation of frontal and parietal cortical regions by various versions of the n-back working memory paradigm, and for process- and content-specific frontoparietal activation by working memory.

2,960 citations