scispace - formally typeset
Search or ask a question
Author

Rebecca Nagy

Bio: Rebecca Nagy is an academic researcher from Ohio State University. The author has contributed to research in topics: Thyroid cancer & Cancer. The author has an hindex of 27, co-authored 56 publications receiving 4454 citations. Previous affiliations of Rebecca Nagy include The Ohio State University Wexner Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that up-regulation of several miRs and regulation of KIT are involved in PTC pathogenesis, and that sequence changes in genes targeted by miRNAs can contribute to their regulation.
Abstract: Apart from alterations in the RET/PTC-RAS-BRAF pathway, comparatively little is known about the genetics of papillary thyroid carcinoma (PTC). We show that numerous microRNAs (miRNAs) are transcriptionally up-regulated in PTC tumors compared with unaffected thyroid tissue. A set of five miRNAs, including the three most up-regulated ones (miR-221, -222, and -146), distinguished unequivocally between PTC and normal thyroid. Additionally, miR-221 was up-regulated in unaffected thyroid tissue in several PTC patients, presumably an early event in carcinogenesis. Tumors in which the up-regulation (11- to 19-fold) of miR-221, -222, and -146 was strongest showed dramatic loss of KIT transcript and Kit protein. In 5 of 10 such cases, this down expression was associated with germline single-nucleotide changes in the two recognition sequences in KIT for these miRNAs. We conclude that up-regulation of several miRs and regulation of KIT are involved in PTC pathogenesis, and that sequence changes in genes targeted by miRNAs can contribute to their regulation.

1,243 citations

Journal ArticleDOI
TL;DR: Two common variants, located on 9q22.33 and 14q13.3, are shown to be associated with thyroid cancer, and both risk alleles are associated with low concentrations of thyroid stimulating hormone (TSH) and high concentration of triiodothyronine (T3).
Abstract: In order to search for sequence variants conferring risk of thyroid cancer we conducted a genome-wide association study in 192 and 37,196 Icelandic cases and controls, respectively, followed by a replication study in individuals of European descent. Here we show that two common variants, located on 9q22.33 and 14q13.3, are associated with the disease. Overall, the strongest association signals were observed for rs965513 on 9q22.33 (OR = 1.75; P = 1.7 x 10(-27)) and rs944289 on 14q13.3 (OR = 1.37; P = 2.0 x 10(-9)). The gene nearest to the 9q22.33 locus is FOXE1 (TTF2) and NKX2-1 (TTF1) is among the genes located at the 14q13.3 locus. Both variants contribute to an increased risk of both papillary and follicular thyroid cancer. Approximately 3.7% of individuals are homozygous for both variants, and their estimated risk of thyroid cancer is 5.7-fold greater than that of noncarriers. In a study on a large sample set from the general population, both risk alleles are associated with low concentrations of thyroid stimulating hormone (TSH), and the 9q22.33 allele is associated with low concentration of thyroxin (T(4)) and high concentration of triiodothyronine (T(3)).

372 citations

Journal ArticleDOI
23 Aug 2004-Oncogene
TL;DR: In this review, 10 of the more highly penetrant cancer syndromes are considered, with emphasis on those predisposing to breast, colon, and/or endocrine neoplasia, as well as their underlying genetic defects.
Abstract: The past two decades have brought many important advances in our understanding of the hereditary susceptibility to cancer. Approximately 5-10% of all cancers are inherited, the majority in an autosomal dominant manner with incomplete penetrance. While this is a small fraction of the overall cancer burden worldwide, the molecular genetic discoveries that have resulted from the study of families with heritable cancer have not only changed the way these families are counselled and managed, but have shed light on molecular regulatory pathways important in sporadic tumour development as well. In this review, we consider 10 of the more highly penetrant cancer syndromes, with emphasis on those predisposing to breast, colon, and/or endocrine neoplasia. We discuss the prevalence, penetrance, and tumour spectrum associated with these syndromes, as well as their underlying genetic defects.

333 citations

Journal ArticleDOI
TL;DR: These cancer genetic counseling recommendations describe the medical, psychosocial, and ethical ramifications of counseling at-risk individuals through genetic cancer risk assessment with or without genetic testing.
Abstract: Updated from their original publication in 2004, these cancer genetic counseling recommendations describe the medical, psychosocial, and ethical ramifications of counseling at-risk individuals through genetic cancer risk assessment with or without genetic testing. They were developed by members of the Practice Issues Subcommittee of the National Society of Genetic Counselors Familial Cancer Risk Counseling Special Interest Group. The information contained in this document is derived from extensive review of the current literature on cancer genetic risk assessment and counseling as well as the personal expertise of genetic counselors specializing in cancer genetics. The recommendations are intended to provide information about the process of genetic counseling and risk assessment for hereditary cancer disorders rather than specific information about individual syndromes. Essential components include the intake, cancer risk assessment, genetic testing for an inherited cancer syndrome, informed consent, disclosure of genetic test results, and psychosocial assessment. These recommendations should not be construed as dictating an exclusive course of management, nor does use of such recommendations guarantee a particular outcome. These recommendations do not displace a health care provider’s professional judgment based on the clinical circumstances of a client.

298 citations

Journal ArticleDOI
08 Apr 2011-Science
TL;DR: It is shown that a gene encoding U4atac snRNA, a component of the minor U12-dependent spliceosome, is mutated in individuals with microcephalic osteodysplastic primordial dwarfism type I, a severe developmental disorder characterized by extreme intrauterine growth retardation and multiple organ abnormalities.
Abstract: Small nuclear RNAs (snRNAs) are essential factors in messenger RNA splicing. By means of homozygosity mapping and deep sequencing, we show that a gene encoding U4atac snRNA, a component of the minor U12-dependent spliceosome, is mutated in individuals with microcephalic osteodysplastic primordial dwarfism type I (MOPD I), a severe developmental disorder characterized by extreme intrauterine growth retardation and multiple organ abnormalities. Functional assays showed that mutations (30G>A, 51G>A, 55G>A, and 111G>A) associated with MOPD I cause defective U12-dependent splicing. Endogenous U12-dependent but not U2-dependent introns were found to be poorly spliced in MOPD I patient fibroblast cells. The introduction of wild-type U4atac snRNA into MOPD I cells enhanced U12-dependent splicing. These results illustrate the critical role of minor intron splicing in human development.

232 citations


Cited by
More filters
Journal ArticleDOI
01 Nov 2009-Thyroid
TL;DR: Evidence-based recommendations are developed to inform clinical decision-making in the management of thyroid nodules and differentiated thyroid cancer and represent, in the authors' opinion, contemporary optimal care for patients with these disorders.
Abstract: Background: Thyroid nodules are a common clinical problem, and differentiated thyroid cancer is becoming increasingly prevalent. Since the American Thyroid Association's (ATA's) guidelines for the management of these disorders were revised in 2009, significant scientific advances have occurred in the field. The aim of these guidelines is to inform clinicians, patients, researchers, and health policy makers on published evidence relating to the diagnosis and management of thyroid nodules and differentiated thyroid cancer. Methods: The specific clinical questions addressed in these guidelines were based on prior versions of the guidelines, stakeholder input, and input of task force members. Task force panel members were educated on knowledge synthesis methods, including electronic database searching, review and selection of relevant citations, and critical appraisal of selected studies. Published English language articles on adults were eligible for inclusion. The American College of Physicians Guideline Gr...

10,501 citations

Journal ArticleDOI
TL;DR: MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment and has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein-coding genes involved in cancer.
Abstract: MicroRNA (miRNA ) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,345 citations

Journal Article
TL;DR: The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery as discussed by the authors.
Abstract: MicroRNA (miRNA) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,306 citations

Journal Article
TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.

6,064 citations

Journal ArticleDOI
TL;DR: Evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes.
Abstract: MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer

5,693 citations