scispace - formally typeset
Search or ask a question
Author

Rebecca Richards-Kortum

Bio: Rebecca Richards-Kortum is an academic researcher from Rice University. The author has contributed to research in topics: Confocal & Microscope. The author has an hindex of 94, co-authored 587 publications receiving 28093 citations. Previous affiliations of Rebecca Richards-Kortum include Cleveland Clinic & University of Texas Medical Branch.


Papers
More filters
Journal ArticleDOI
TL;DR: This review describes optical interactions pursued for biomedical applications (fluorescence, fluorescence lifetime, phosphorescence, and Raman from cells, cultures, and tissues) and provides a descriptive framework for light interaction based upon tissue absorption and scattering properties.
Abstract: The interaction of light within tissue has been used to recognize disease since the mid-1800s. The recent developments of small light sources, detectors, and fiber optic probes provide opportunities to quantitatively measure these interactions, which yield information for diagnosis at the biochemical, structural, or (patho)physiological level within intact tissues. However, because of the strong scattering properties of tissues, the reemitted optical signal is often influenced by changes in biochemistry (as detected by these spectroscopic approaches) and by physiological and pathophysiological changes in tissue scattering. One challenge of biomedical optics is to uncouple the signals influenced by biochemistry, which themselves provide specificity for identifying diseased states, from those influenced by tissue scattering, which are typically unspecific to a pathology. In this review, we describe optical interactions pursued for biomedical applications (fluorescence, fluorescence lifetime, phosphorescence, and Raman from cells, cultures, and tissues) and then provide a descriptive framework for light interaction based upon tissue absorption and scattering properties. Finally, we review important endogenous and exogenous biological chromophores and describe current work to employ these signals for detection and diagnosis of disease.

1,230 citations

Journal Article
TL;DR: A new class of molecular specific contrast agents for vital reflectance imaging based on gold nanoparticles attached to probe molecules with high affinity for specific cellular biomarkers is described and it is shown that gold conjugates can be delivered topically for imaging throughout the whole epithelium.
Abstract: Recent developments in photonic technology provide the ability to noninvasively image cells in vivo; these new cellular imaging technologies have the potential to dramatically improve the prevention, detection, and therapy of epithelial cancers. Endoscope-compatible microscopies, such as optical coherence tomography and reflectance confocal microscopy, image reflected light, providing a three-dimensional picture of tissue microanatomy with excellent spatial resolution (1-10 micro m). However, their ability to image molecular biomarkers associated with cancer is limited. Here, we describe a new class of molecular specific contrast agents for vital reflectance imaging based on gold nanoparticles attached to probe molecules with high affinity for specific cellular biomarkers. The application of gold bioconjugates for vital imaging of precancers is demonstrated using cancer cell suspensions, three-dimensional cell cultures, and normal and neoplastic fresh cervical biopsies. We show that gold conjugates can be delivered topically for imaging throughout the whole epithelium. These contrast agents have potential to extend the ability of vital reflectance microscopies for in vivo molecular imaging. They can potentially enable combined screening, detection, and therapy of disease using inexpensive imaging systems; such tools could allow mass screening of diseases such as cancer in resource-poor settings.

900 citations

Journal ArticleDOI
TL;DR: Spectra obtained from intact tissues are comprehensively reviewed and discussed in terms of the molecular and microscopic literature to develop a framework for analyzing Raman signals to yield information about the molecular changes that occur with neoplasia.
Abstract: Optical spectroscopy has been extensively studied as a potential in vivo diagnostic tool that can provide information about both the chemical and morphologic structure of tissue in near real time. Most in vivo studies have concentrated on elastic scattering and fluorescence spectroscopies since these signals can be obtained with a good signal-to-noise ratio quickly. However, Raman spectroscopy, an inelastic scattering process, provides a wealth of spectrally narrow features that can be related to the specific molecular structure of the sample. Because of these advantages, Raman spectroscopy has been used to study static and dynamic properties of biologically important molecules in solution, in single living cells, in cell cultures, and more recently, in tissues. This article reviews recent developments in the attempt to develop diagnostic techniques for precancers and cancers, based on Raman spectroscopy. The article surveys important transformations that occur as tissues progress from normal to precancer and cancerous stages. We briefly review the extensive literature that summarizes the features and interpretation of Raman spectra of these molecules in solution, and in progressively more complex biological systems. Finally, spectra obtained from intact tissues are comprehensively reviewed and discussed in terms of the molecular and microscopic literature to develop a framework for analyzing Raman signals to yield information about the molecular changes that occur with neoplasia. The article concludes with our perspective on the potential role of Raman spectroscopy in diagnosing precancer and cancerous tissues.

492 citations

Journal ArticleDOI
TL;DR: This work reviews the use of fiber optic probes for optical spectroscopy, focusing on applications in turbid media, such as tissue, and covers universal design principles as well as technologies for beam deflecting and reshaping.
Abstract: Fiber optic probes are a key element for biomedical spectroscopic sensing. We review the use of fiber optic probes for optical spectroscopy, focusing on applications in turbid media, such as tissue. The design of probes for reflectance, polarized reflectance, fluorescence, and Raman spectroscopy is illustrated. We cover universal design principles as well as technologies for beam deflecting and reshaping.

464 citations

Journal ArticleDOI
TL;DR: Laser-induced fluorescence spectra obtained during colonoscopy could be used to correctly differentiate adenomas from normal colonic mucosa and hyperplastic polyps in 97% of the specimens studied with the resulting sensitivity, specificity, and positive predictive value.

362 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The arsenal of nanocarriers and molecules available for selective tumour targeting, and the challenges in cancer treatment are detailed and emphasized.
Abstract: Nanotechnology has the potential to revolutionize cancer diagnosis and therapy. Advances in protein engineering and materials science have contributed to novel nanoscale targeting approaches that may bring new hope to cancer patients. Several therapeutic nanocarriers have been approved for clinical use. However, to date, there are only a few clinically approved nanocarriers that incorporate molecules to selectively bind and target cancer cells. This review examines some of the approved formulations and discusses the challenges in translating basic research to the clinic. We detail the arsenal of nanocarriers and molecules available for selective tumour targeting, and emphasize the challenges in cancer treatment.

7,443 citations

Journal ArticleDOI
TL;DR: This paper introduces the localized surface plasmon resonance (LSPR) sensor and describes how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation.
Abstract: Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.

6,352 citations

Journal ArticleDOI
TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

6,207 citations

Journal ArticleDOI
TL;DR: It is found that, after exposure to continuous red laser at 800 nm, malignant cells require about half the laser energy to be photothermally destroyed than the nonmalignant cells, so both efficient cancer cell diagnostics and selective photothermal therapy are realized at the same time.
Abstract: Due to strong electric fields at the surface, the absorption and scattering of electromagnetic radiation by noble metal nanoparticles are strongly enhanced. These unique properties provide the potential of designing novel optically active reagents for simultaneous molecular imaging and photothermal cancer therapy. It is desirable to use agents that are active in the near-infrared (NIR) region of the radiation spectrum to minimize the light extinction by intrinsic chromophores in native tissue. Gold nanorods with suitable aspect ratios (length divided by width) can absorb and scatter strongly in the NIR region (650−900 nm). In the present work, we provide an in vitro demonstration of gold nanorods as novel contrast agents for both molecular imaging and photothermal cancer therapy. Nanorods are synthesized and conjugated to anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibodies and incubated in cell cultures with a nonmalignant epithelial cell line (HaCat) and two malignant oral epithelial ...

5,047 citations