scispace - formally typeset
Search or ask a question
Author

Reed A. Graves

Bio: Reed A. Graves is an academic researcher from University of Chicago. The author has contributed to research in topics: Adipocyte & Adipose tissue. The author has an hindex of 17, co-authored 22 publications receiving 8705 citations. Previous affiliations of Reed A. Graves include University of Illinois at Chicago & Harvard University.
Topics: Adipocyte, Adipose tissue, Enhancer, Transgene, Gene

Papers
More filters
Journal ArticleDOI
20 Mar 1998-Cell
TL;DR: Results indicate that PGC-1 plays a key role in linking nuclear receptors to the transcriptional program of adaptive thermogenesis.

3,654 citations

Journal ArticleDOI
TL;DR: In this paper, an enhancer from the 5'-flanking region of the adipocyte P2 (aP2) gene that directs high-level adipocyte-specific gene expression in both cultured cells and transgenic mice was identified.
Abstract: Previously, we have isolated and characterized an enhancer from the 5'-flanking region of the adipocyte P2 (aP2) gene that directs high-level adipocyte-specific gene expression in both cultured cells and transgenic mice. The key regulator of this enhancer is a cell type-restricted nuclear factor termed ARF6. Target sequences for ARF6 in the aP2 enhancer exhibit homology to a direct repeat of hormone response elements (HREs) spaced by one nucleotide; this motif (DR-1) has been demonstrated previously to be the preferred binding site for heterodimers of the retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR). We have cloned a novel member of the peroxisome proliferator-activated receptor family designated mPPAR gamma 2, and we demonstrate that a heterodimeric complex of mPPAR gamma 2 and RXR alpha constitute a functional ARF6 complex. Expression of mPPAR gamma 2 is induced very early during the differentiation of several cultured adipocyte cell lines and is strikingly adipose-specific in vivo. mPPAR gamma 2 and RXR alpha form heterodimers on ARF6-binding sites in vitro, and antiserum to RXR alpha specifically inhibits ARF6 activity in adipocyte nuclear extracts. Moreover, forced expression of mPPAR gamma 2 and RXR alpha activates the adipocyte-specific aP2 enhancer in cultured fibroblasts, and this activation is potentiated by peroxisome proliferators, fatty acids, and 9-cis retinoic acid. These results identify mPPAR gamma 2 as the first adipocyte-specific transcription factor and suggest mechanisms whereby fatty acids, peroxisome proliferators, 9-cis retinoic acid, and other lipids may regulate adipocyte gene expression and differentiation.

2,237 citations

Journal ArticleDOI
TL;DR: The screening of an adipocyte cDNA expression library suggests that ADD1 plays a role in the regulation of determination- and differentiation-specific gene expression in adipocytes.
Abstract: DNA-binding proteins containing the basic helix-loop-helix (bHLH) domain have been implicated in lineage determination and the regulation of specific gene expression in a number of cell types. By oligonucleotide screening of an adipocyte cDNA expression library, we have identified a novel member of the bHLH-leucine zipper transcription factor family designated ADD1. ADD1 mRNA is expressed predominantly in brown adipose tissue in vivo and is regulated during both determination and differentiation of cultured adipocyte cell lines. ADD1 can function as a sequence-specific transcriptional activator in that it stimulates expression of a chloramphenicol acetyltransferase vector containing multiple ADD1 binding sequences but is unable to activate the myosin light-chain enhancer, which contains multiple binding sites for another bHLH factor, MyoD. ADD1 can also activate transcription through a binding site present in the 5'-flanking region of the fatty acid synthetase gene which is expressed in a differentiation-dependent manner in adipose cells. These data suggest that ADD1 plays a role in the regulation of determination- and differentiation-specific gene expression in adipocytes.

560 citations

Journal ArticleDOI
TL;DR: Results suggest that PPAR gamma 2 serves a unique function among PPAR family members as an important regulator of adipocyte-specific gene expression.
Abstract: Previously, we identified a novel transcription factor, ARF6, as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. In order to identify the proteins which comprise the adipocyte ARF6 complex, we have purified this DNA binding activity from a cultured adipocyte cell line. We have developed a system for growth and differentiation of HIB-1B brown adipocytes in suspension culture that facilitates the production of large quantities of adipocyte nuclear extract. ARF6 was purified from HIB-1B nuclear extract by a combination of conventional and sequence-specific DNA affinity chromotography. Chemical sequencing and mass spectral analysis of tryptic peptides derived from the purified polypeptides identifies the ARF6 complex as a heterodimer of the retinoid X receptor alpha (RXR alpha) and the murine peroxisome proliferator activated receptor gamma (PPAR gamma). Of the known PPAR gamma isoforms, PPAR gamma is the predominant form expressed in adipose tissue. These results suggest that PPAR gamma 2 serves a unique function among PPAR family members as an important regulator of adipocyte-specific gene expression.

384 citations

Journal ArticleDOI
TL;DR: The results demonstrate that insulin resistance and diabetes can occur in animals without significant adipose deposits and troglitazone can alter glucose and lipid metabolism independent of its effects on adipose tissue.
Abstract: We have investigated the antidiabetic action of troglitazone in aP2/DTA mice, whose white and brown fat was virtually eliminated by fat-specific expression of diphtheria toxin A chain. aP2/DTA mice had markedly suppressed serum leptin levels and were hyperphagic, but did not gain excess weight. aP2/DTA mice fed a control diet were hyperlipidemic, hyperglycemic, and had hyperinsulinemia indicative of insulin-resistant diabetes. Treatment with troglitazone alleviated the hyperglycemia, normalized the tolerance to intraperitoneally injected glucose, and significantly decreased elevated insulin levels. Troglitazone also markedly decreased the serum levels of cholesterol, triglycerides, and free fatty acids both in wild-type and aP2/DTA mice. The decrease in serum triglycerides in aP2/DTA mice was due to a marked reduction in VLDL- and LDL-associated triglyceride. In skeletal muscle, triglyceride levels were decreased in aP2/DTA mice compared with controls, but glycogen levels were increased. Troglitazone treatment decreased skeletal muscle, but not hepatic triglyceride and increased hepatic and muscle glycogen content in wild-type mice. Troglitazone decreased muscle glycogen content in aP2/DTA mice without affecting muscle triglyceride levels. The levels of peroxisomal proliferator-activated receptor gamma mRNA in liver increased slightly in aP2/DTA mice and were not changed by troglitazone treatment. The results demonstrate that insulin resistance and diabetes can occur in animals without significant adipose deposits. Furthermore, troglitazone can alter glucose and lipid metabolism independent of its effects on adipose tissue.

339 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob) found that the expression of 1,304 transcripts correlated significantly with body mass.
Abstract: Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We found that the expression of 1,304 transcripts correlated significantly with body mass. Of the 100 most significantly correlated genes, 30% encoded proteins that are characteristic of macrophages and are positively correlated with body mass. Immunohistochemical analysis of perigonadal, perirenal, mesenteric, and subcutaneous adipose tissue revealed that the percentage of cells expressing the macrophage marker F4/80 (F4/80+) was significantly and positively correlated with both adipocyte size and body mass. Similar relationships were found in human subcutaneous adipose tissue stained for the macrophage antigen CD68. Bone marrow transplant studies and quantitation of macrophage number in adipose tissue from macrophage-deficient (Csf1op/op) mice suggest that these F4/80+ cells are CSF-1 dependent, bone marrow-derived adipose tissue macrophages. Expression analysis of macrophage and nonmacrophage cell populations isolated from adipose tissue demonstrates that adipose tissue macrophages are responsible for almost all adipose tissue TNF-alpha expression and significant amounts of iNOS and IL-6 expression. Adipose tissue macrophage numbers increase in obesity and participate in inflammatory pathways that are activated in adipose tissues of obese individuals.

8,902 citations

Journal ArticleDOI
TL;DR: An analytical strategy is introduced, Gene Set Enrichment Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes, which identifies a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human diabetic muscle.
Abstract: DNA microarrays can be used to identify gene expression changes characteristic of human disease. This is challenging, however, when relevant differences are subtle at the level of individual genes. We introduce an analytical strategy, Gene Set Enrichment Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes. Using this approach, we identify a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human diabetic muscle. Expression of these genes is high at sites of insulin-mediated glucose disposal, activated by PGC-1α and correlated with total-body aerobic capacity. Our results associate this gene set with clinically important variation in human metabolism and illustrate the value of pathway relationships in the analysis of genomic profiling experiments.

7,997 citations

Journal ArticleDOI
TL;DR: To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches and PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.
Abstract: Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.

6,473 citations

Journal ArticleDOI
TL;DR: The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Abstract: Cannon, Barbara, and Jan Nedergaard. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84: 277–359, 2004; 10.1152/physrev.00015.2003.—The function of brown adipose tissue i...

5,470 citations

Journal ArticleDOI
18 Jan 2001-Nature
TL;DR: It is shown that adipocytes secrete a unique signalling molecule, which is named resistin (for resistance to insulin), which circulating resistin levels are decreased by the anti-diabetic drug rosiglitazone, and increased in diet-induced and genetic forms of obesity.
Abstract: Diabetes mellitus is a chronic disease that leads to complications including heart disease, stroke, kidney failure, blindness and nerve damage. Type 2 diabetes, characterized by target-tissue resistance to insulin, is epidemic in industrialized societies and is strongly associated with obesity; however, the mechanism by which increased adiposity causes insulin resistance is unclear. Here we show that adipocytes secrete a unique signalling molecule, which we have named resistin (for resistance to insulin). Circulating resistin levels are decreased by the anti-diabetic drug rosiglitazone, and increased in diet-induced and genetic forms of obesity. Administration of anti-resistin antibody improves blood sugar and insulin action in mice with diet-induced obesity. Moreover, treatment of normal mice with recombinant resistin impairs glucose tolerance and insulin action. Insulin-stimulated glucose uptake by adipocytes is enhanced by neutralization of resistin and is reduced by resistin treatment. Resistin is thus a hormone that potentially links obesity to diabetes.

4,557 citations