scispace - formally typeset
Search or ask a question
Author

Reed Riddle

Bio: Reed Riddle is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Thirty Meter Telescope & Supernova. The author has an hindex of 36, co-authored 196 publications receiving 4326 citations. Previous affiliations of Reed Riddle include Georgia State University & Iowa State University.


Papers
More filters
Journal ArticleDOI
Matthew J. Graham, Shrinivas R. Kulkarni, Eric C. Bellm, Scott M. Adams, Cristina Barbarino, Nadejda Blagorodnova, Dennis Bodewits, Bryce Bolin, Patrick Brady, S. Bradley Cenko, Chan-Kao Chang, Michael W. Coughlin, Kaushik De, Gwendolyn Eadie, Tony L. Farnham, Ulrich Feindt, Anna Franckowiak, Christoffer Fremling, Avishay Gal-Yam, Suvi Gezari, Sourav Ghosh, Daniel A. Goldstein, V. Zach Golkhou, Ariel Goobar, Anna Y. Q. Ho, Daniela Huppenkothen, Zeljko Ivezic, R. Lynne Jones, Mario Juric, David L. Kaplan, Mansi M. Kasliwal, Michael S. P. Kelley, Thomas Kupfer, Chien-De Lee, Hsing Wen Lin, Ragnhild Lunnan, Ashish Mahabal, Adam A. Miller, Chow-Choong Ngeow, Peter Nugent, Eran O. Ofek, Thomas A. Prince, L. Rauch, Jan van Roestel, Steve Schulze, Leo Singer, Jesper Sollerman, Francesco Taddia, Lin Yan, Quanzhi Ye, Po-Chieh Yu, Igor Andreoni, Tom A. Barlow, James M. Bauer, Ron Beck, Justin Belicki, Rahul Biswas, V. Brinnel, Tim Brooke, Brian D. Bue, Mattia Bulla, Kevin B. Burdge, Rick Burruss, Andrew J. Connolly, John Cromer, Virginia Cunningham, Richard Dekany, Alex Delacroix, Vandana Desai, Dmitry A. Duev, Eugean Hacopians, David Hale, George Helou, John Henning, David Hover, Lynne A. Hillenbrand, Justin Howell, Tiara Hung, David Imel, Wing-Huen Ip, Edward Jackson, Shai Kaspi, Stephen Kaye, Marek Kowalski, Emily Kramer, Michael A. Kuhn, Walter Landry, Russ R. Laher, Peter H. Mao, Frank J. Masci, Serge Monkewitz, Patrick J. Murphy, J. Nordin, Maria T. Patterson, Bryan E. Penprase, Michael Porter, Umaa Rebbapragada, Daniel J. Reiley, Reed Riddle, Mickael Rigault, Hector P. Rodriguez, Ben Rusholme, J. V. Santen, David L. Shupe, Roger M. H. Smith, Maayane T. Soumagnac, Robert Stein, Jason Surace, Paula Szkody, Scott Terek, Angela Van Sistine, Sjoert van Velzen, W. Thomas Vestrand, Richard Walters, Charlotte Ward, Chaoran Zhang, Jeffry Zolkower 
TL;DR: The Zwicky Transient Facility (ZTF) as discussed by the authors is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time.
Abstract: The Zwicky Transient Facility (ZTF), a public-private enterprise, is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time. It is well positioned in the development of time domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities which provided funding ("partnership") are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r $\sim$ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei and tidal disruption events, stellar variability, and Solar System objects.

501 citations

Journal ArticleDOI
Matthew J. Graham1, Shrinivas R. Kulkarni1, Eric C. Bellm2, Scott M. Adams1, Cristina Barbarino3, Nadejda Blagorodnova1, Dennis Bodewits4, Dennis Bodewits5, Bryce Bolin2, Patrick Brady6, S. Bradley Cenko7, S. Bradley Cenko5, Chan-Kao Chang8, Michael W. Coughlin1, Kaushik De1, Gwendolyn Eadie2, Tony L. Farnham5, Ulrich Feindt3, Anna Franckowiak, Christoffer Fremling1, Suvi Gezari7, Suvi Gezari5, Sourav Ghosh6, Daniel A. Goldstein1, V. Zach Golkhou2, Ariel Goobar3, Anna Y. Q. Ho1, Daniela Huppenkothen2, Željko Ivezić2, R. Lynne Jones2, Mario Juric2, David L. Kaplan6, Mansi M. Kasliwal1, Michael S. P. Kelley5, Thomas Kupfer9, Thomas Kupfer1, Chien De Lee8, Hsing Wen Lin8, Hsing Wen Lin10, Ragnhild Lunnan3, Ashish Mahabal1, Adam A. Miller11, Adam A. Miller12, Chow-Choong Ngeow8, Peter Nugent13, Peter Nugent14, Eran O. Ofek15, Thomas A. Prince1, L. Rauch, Jan van Roestel16, Steve Schulze15, Leo Singer5, Leo Singer7, Jesper Sollerman3, Francesco Taddia3, Lin Yan1, Quanzhi Ye1, Po-Chieh Yu8, Tom A. Barlow1, James Bauer5, Ron Beck1, Justin Belicki1, Rahul Biswas3, V. Brinnel17, Tim Brooke1, Brian D. Bue1, Mattia Bulla3, Rick Burruss1, Andrew J. Connolly2, John Cromer1, Virginia Cunningham5, Richard Dekany1, Alex Delacroix1, Vandana Desai1, Dmitry A. Duev1, Michael Feeney1, David Flynn1, Sara Frederick5, Avishay Gal-Yam15, Matteo Giomi17, Steven Groom1, Eugean Hacopians1, David Hale1, George Helou1, John Henning1, David Hover1, Lynne A. Hillenbrand1, Justin Howell1, Tiara Hung5, David Imel1, Wing-Huen Ip18, Wing-Huen Ip8, Edward Jackson1, Shai Kaspi19, Stephen Kaye1, Marek Kowalski17, E. A. Kramer1, Michael A. Kuhn1, Walter Landry1, Russ R. Laher1, Peter H. Mao1, Frank J. Masci1, Serge Monkewitz1, Patrick J. Murphy1, Jakob Nordin17, Maria T. Patterson2, Bryan E. Penprase20, Michael Porter1, Umaa Rebbapragada1, Daniel J. Reiley1, Reed Riddle1, Mickael Rigault21, Hector Rodriguez1, Ben Rusholme1, J. V. Santen, David L. Shupe1, Roger M. H. Smith1, Maayane T. Soumagnac15, Robert Stein, Jason Surace1, Paula Szkody2, Scott Terek1, Angela Van Sistine6, Sjoert van Velzen5, W. Thomas Vestrand22, Richard Walters1, Charlotte Ward5, Chaoran Zhang6, Jeffry Zolkower1 
TL;DR: The Zwicky Transient Facility (ZTF) as mentioned in this paper is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg^2 field of view and an 8 second readout time.
Abstract: The Zwicky Transient Facility (ZTF), a public–private enterprise, is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg^2 field of view and an 8 second readout time. It is well positioned in the development of time-domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities that provided funding ("partnership") are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r ~ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF, including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei, and tidal disruption events, stellar variability, and solar system objects.

280 citations

Journal ArticleDOI
13 Sep 2007-Nature
TL;DR: The detection of a planet orbiting a post-red-giant star demonstrates that planets with orbital distances of less than 2 au can survive the red-Giant expansion of their parent stars.
Abstract: After the initial discoveries fifteen years ago, over 200 extrasolar planets have now been detected. Most of them orbit main-sequence stars similar to our Sun, although a few planets orbiting red giant stars have been recently found. When the hydrogen in their cores runs out, main-sequence stars undergo an expansion into red-giant stars. This expansion can modify the orbits of planets and can easily reach and engulf the inner planets. The same will happen to the planets of our Solar System in about five billion years and the fate of the Earth is matter of debate. Here we report the discovery of a planetary-mass body (Msini = 3.2M_(Jupiter)) orbiting the star V 391 Pegasi at a distance of about 1.7 astronomical units (au), with a period of 3.2 years. This star is on the extreme horizontal branch of the Hertzsprung–Russell diagram, burning helium in its core and pulsating. The maximum radius of the red-giant precursor of V 391 Pegasi may have reached 0.7 au, while the orbital distance of the planet during the stellar main-sequence phase is estimated to be about 1 au. This detection of a planet orbiting a post-red-giant star demonstrates that planets with orbital distances of less than 2 au can survive the red-giant expansion of their parent stars.

244 citations

Journal ArticleDOI
TL;DR: The TMT site testing was concluded by the selection of two remaining sites for further consideration, Armazones and Mauna Kea 13N as mentioned in this paper, which showed that all five candidates are excellent sites for an extremely large astronomical observatory and that none of the sites stands out as the obvious and only logical choice based on its combined properties.
Abstract: As part of the conceptual and preliminary design processes of the Thirty Meter Telescope (TMT), the TMT site-testing team has spent the last five years measuring the atmospheric properties of five candidate mountains in North and South America with an unprecedented array of instrumentation. The site-testing period was preceded by several years of analyses selecting the five candidates: Cerros Tolar, Armazones and Tolonchar in northern Chile; San Pedro Martir in Baja California, Mexico; and the 13 North (13N) site on Mauna Kea, Hawaii. Site testing was concluded by the selection of two remaining sites for further consideration, Armazones and Mauna Kea 13N. It showed that all five candidates are excellent sites for an extremely large astronomical observatory and that none of the sites stands out as the obvious and only logical choice based on its combined properties. This is the first article in a series discussing the TMT site-testing project.

153 citations

Journal ArticleDOI
TL;DR: In this article, a catalog of 11 multi-planet systems from Campaigns 1 and 2 of the K2 mission is presented, which are mostly smaller than Neptune (21/26 planets), and all have short periods (P < 50 days).
Abstract: We present a catalog of 11 multiplanet systems from Campaigns 1 and 2 of the K2 mission. We report the sizes and orbits of 26 planets split between seven two-planet systems and four three-planet systems. These planets stem from a systematic search of the K2 photometry for all dwarf stars observed by K2 in these fields. We precisely characterized the host stars with adaptive optics imaging and analysis of high-resolution optical spectra from Keck/HIRES and medium-resolution spectra from IRTF/SpeX. We confirm two planet candidates by mass detection and validate the remaining 24 candidates to >99% confidence. Thirteen planets were previously validated or confirmed by other studies, and 24 were previously identified as planet candidates. The planets are mostly smaller than Neptune (21/26 planets), as in the Kepler mission, and all have short periods (P < 50 days) due to the duration of the K2 photometry. The host stars are relatively bright (most have Kp < 12.5 mag) and are amenable to follow-up characterization. For K2-38, we measured precise radial velocities using Keck/HIRES and provide initial estimates of the planet masses. K2-38b is a short-period super-Earth with a radius of 1.55 ± 0.16 R⊕, a mass of 12.0 ± 2.9 M⊕, and a high density consistent with an iron-rich composition. The outer planet K2-38c is a lower-density sub-Neptune-size planet with a radius of 2.42 ± 0.29 R⊕ and a mass of 9.9 ± 4.6 M⊕ that likely has a substantial envelope. This new planet sample demonstrates the capability of K2 to discover numerous planetary systems around bright stars.

136 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as discussed by the authors will search for planets transiting bright and nearby stars using four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with I C ≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

2,604 citations

01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
B. P. Abbott1, R. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1271 moreInstitutions (145)
TL;DR: In 2019, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9 and the Virgo detector was also taking data that did not contribute to detection due to a low SINR but were used for subsequent parameter estimation as discussed by the authors.
Abstract: On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810.

1,189 citations