Author
Regev Cohen
Other affiliations: Laniado Hospital, Eindhoven University of Technology
Bio: Regev Cohen is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Image quality & Beamforming. The author has an hindex of 13, co-authored 35 publications receiving 606 citations. Previous affiliations of Regev Cohen include Laniado Hospital & Eindhoven University of Technology.
Papers
More filters
01 Jan 2020
TL;DR: In this article, the authors consider deep learning strategies in ultrasound systems, from the front end to advanced applications, and provide the reader with a broad understanding of the possible impact of deep learning methodologies on many aspects of ultrasound imaging.
Abstract: In this article, we consider deep learning strategies in ultrasound systems, from the front end to advanced applications. Our goal is to provide the reader with a broad understanding of the possible impact of deep learning methodologies on many aspects of ultrasound imaging. In particular, we discuss methods that lie at the interface of signal acquisition and machine learning, exploiting both data structure (e.g., sparsity in some domain) and data dimensionality (big data) already at the raw radio-frequency channel stage. As some examples, we outline efficient and effective deep learning solutions for adaptive beamforming and adaptive spectral Doppler through artificial agents, learn compressive encodings for the color Doppler, and provide a framework for structured signal recovery by learning fast approximations of iterative minimization problems, with applications to clutter suppression and super-resolution ultrasound. These emerging technologies may have a considerable impact on ultrasound imaging, showing promise across key components in the receive processing chain.
168 citations
TL;DR: A new approach to clutter removal based on robust principle component analysis (PCA) and deep learning is proposed and it is illustrated that an iterative algorithm based on this model exhibits improved separation of microbubble signal from the tissue signal over commonly practiced methods.
Abstract: Contrast enhanced ultrasound is a radiation-free imaging modality which uses encapsulated gas microbubbles for improved visualization of the vascular bed deep within the tissue. It has recently been used to enable imaging with unprecedented subwavelength spatial resolution by relying on super-resolution techniques. A typical preprocessing step in super-resolution ultrasound is to separate the microbubble signal from the cluttering tissue signal. This step has a crucial impact on the final image quality. Here, we propose a new approach to clutter removal based on robust principle component analysis (PCA) and deep learning. We begin by modeling the acquired contrast enhanced ultrasound signal as a combination of low rank and sparse components. This model is used in robust PCA and was previously suggested in the context of ultrasound Doppler processing and dynamic magnetic resonance imaging. We then illustrate that an iterative algorithm based on this model exhibits improved separation of microbubble signal from the tissue signal over commonly practiced methods. Next, we apply the concept of deep unfolding to suggest a deep network architecture tailored to our clutter filtering problem which exhibits improved convergence speed and accuracy with respect to its iterative counterpart. We compare the performance of the suggested deep network on both simulations and in-vivo rat brain scans, with a commonly practiced deep-network architecture and with the fast iterative shrinkage algorithm. We show that our architecture exhibits better image quality and contrast.
121 citations
TL;DR: It is shown that deep neural networks, that adopt the algorithmic structure and constraints of adaptive signal processing techniques, can efficiently learn to perform fast high-quality ultrasound beamforming using very little training data, and that high image quality can be maintained when measuring at low data-rates, using undersampled array designs.
Abstract: Biomedical imaging is unequivocally dependent on the ability to reconstruct interpretable and high-quality images from acquired sensor data. This reconstruction process is pivotal across many applications, spanning from magnetic resonance imaging to ultrasound imaging. While advanced data-adaptive reconstruction methods can recover much higher image quality than traditional approaches, their implementation often poses a high computational burden. In ultrasound imaging, this burden is significant, especially when striving for low-cost systems, and has motivated the development of high-resolution and high-contrast adaptive beamforming methods. Here we show that deep neural networks, that adopt the algorithmic structure and constraints of adaptive signal processing techniques, can efficiently learn to perform fast high-quality ultrasound beamforming using very little training data. We apply our technique to two distinct ultrasound acquisition strategies (plane wave, and synthetic aperture), and demonstrate that high image quality can be maintained when measuring at low data-rates, using undersampled array designs. Beyond biomedical imaging, we expect that the proposed deep learning based adaptive processing framework can benefit a variety of array and signal processing applications, in particular when data-efficiency and robustness are of importance.
94 citations
TL;DR: The results demonstrate that COBA outperforms DAS in terms of resolution and contrast and that the suggested beamformers offer a sizable element reduction while generating images with an equivalent or improved quality in comparison with DAS.
Abstract: The standard technique used by commercial medical ultrasound systems to form B-mode images is delay and sum (DAS) beamforming. However, DAS often results in limited image resolution and contrast that are governed by the center frequency and the aperture size of the ultrasound transducer. A large number of elements lead to improved resolution but at the same time increase the data size and the system cost due to the receive electronics required for each element. Therefore, reducing the number of receiving channels while producing high-quality images is of great importance. In this paper, we introduce a nonlinear beamformer called COnvolutional Beamforming Algorithm (COBA), which achieves significant improvement of lateral resolution and contrast. In addition, it can be implemented efficiently using the fast Fourier transform. Based on the COBA concept, we next present two sparse beamformers with closed-form expressions for the sensor locations, which result in the same beam pattern as DAS and COBA while using far fewer array elements. Optimization of the number of elements shows that they require a minimal number of elements that are on the order of the square root of the number used by DAS. The performance of the proposed methods is tested and validated using simulated data, phantom scans, and in vivo cardiac data. The results demonstrate that COBA outperforms DAS in terms of resolution and contrast and that the suggested beamformers offer a sizable element reduction while generating images with an equivalent or improved quality in comparison with DAS.
74 citations
Posted Content•
TL;DR: In this article, efficient and effective deep learning solutions for adaptive beamforming and adaptive spectral Doppler through artificial agents are outlined, and a framework for structured signal recovery by learning fast approximations of iterative minimization problems is provided.
Abstract: We consider deep learning strategies in ultrasound systems, from the front-end to advanced applications. Our goal is to provide the reader with a broad understanding of the possible impact of deep learning methodologies on many aspects of ultrasound imaging. In particular, we discuss methods that lie at the interface of signal acquisition and machine learning, exploiting both data structure (e.g. sparsity in some domain) and data dimensionality (big data) already at the raw radio-frequency channel stage. As some examples, we outline efficient and effective deep learning solutions for adaptive beamforming and adaptive spectral Doppler through artificial agents, learn compressive encodings for color Doppler, and provide a framework for structured signal recovery by learning fast approximations of iterative minimization problems, with applications to clutter suppression and super-resolution ultrasound. These emerging technologies may have considerable impact on ultrasound imaging, showing promise across key components in the receive processing chain.
55 citations
Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.
10,124 citations
Posted Content•
TL;DR: The increasing popularity of unrolled deep networks is due, in part, to their potential in developing efficient, high-performance (yet interpretable) network architectures from reasonably sized training sets.
Abstract: Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.
398 citations
TL;DR: A novel deep network, derived from Spatial Transformer Networks, is presented, which simultaneously predicts the disease severity score associated to a input frame and provides localization of pathological artefacts in a weakly-supervised way.
Abstract: Deep learning (DL) has proved successful in medical imaging and, in the wake of the recent COVID-19 pandemic, some works have started to investigate DL-based solutions for the assisted diagnosis of lung diseases. While existing works focus on CT scans, this paper studies the application of DL techniques for the analysis of lung ultrasonography (LUS) images. Specifically, we present a novel fully-annotated dataset of LUS images collected from several Italian hospitals, with labels indicating the degree of disease severity at a frame-level, video-level, and pixel-level (segmentation masks). Leveraging these data, we introduce several deep models that address relevant tasks for the automatic analysis of LUS images. In particular, we present a novel deep network, derived from Spatial Transformer Networks, which simultaneously predicts the disease severity score associated to a input frame and provides localization of pathological artefacts in a weakly-supervised way. Furthermore, we introduce a new method based on uninorms for effective frame score aggregation at a video-level. Finally, we benchmark state of the art deep models for estimating pixel-level segmentations of COVID-19 imaging biomarkers. Experiments on the proposed dataset demonstrate satisfactory results on all the considered tasks, paving the way to future research on DL for the assisted diagnosis of COVID-19 from LUS data.
398 citations
TL;DR: In this paper, an emerging technique called algorithm unrolling, or unfolding, offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are widely used in signal processing and deep neural networks.
Abstract: Deep neural networks provide unprecedented performance gains in many real-world problems in signal and image processing. Despite these gains, the future development and practical deployment of deep networks are hindered by their black-box nature, i.e., a lack of interpretability and the need for very large training sets. An emerging technique called algorithm unrolling, or unfolding, offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are widely used in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention, and it is rapidly growing in both theoretic investigations and practical applications. The increasing popularity of unrolled deep networks is due, in part, to their potential in developing efficient, high-performance (yet interpretable) network architectures from reasonably sized training sets.
377 citations
01 Jan 2016
TL;DR: The digital signal processing a computer based approach is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: digital signal processing a computer based approach is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the digital signal processing a computer based approach is universally compatible with any devices to read.
343 citations