scispace - formally typeset
Search or ask a question
Author

Régine Delourme

Bio: Régine Delourme is an academic researcher from University of Rennes. The author has contributed to research in topics: Leptosphaeria maculans & Population. The author has an hindex of 46, co-authored 119 publications receiving 7230 citations. Previous affiliations of Régine Delourme include Institut national de la recherche agronomique & École nationale supérieure agronomique de Rennes.


Papers
More filters
Journal ArticleDOI
Boulos Chalhoub1, Shengyi Liu2, Isobel A. P. Parkin3, Haibao Tang4, Haibao Tang5, Xiyin Wang6, Julien Chiquet1, Harry Belcram1, Chaobo Tong2, Birgit Samans7, Margot Correa8, Corinne Da Silva8, Jérémy Just1, Cyril Falentin9, Chu Shin Koh10, Isabelle Le Clainche1, Maria Bernard8, Pascal Bento8, Benjamin Noel8, Karine Labadie8, Adriana Alberti8, Mathieu Charles9, Dominique Arnaud1, Hui Guo6, Christian Daviaud, Salman Alamery11, Kamel Jabbari12, Kamel Jabbari1, Meixia Zhao13, Patrick P. Edger14, Houda Chelaifa1, David C. Tack15, Gilles Lassalle9, Imen Mestiri1, Nicolas Schnel9, Marie-Christine Le Paslier9, Guangyi Fan, Victor Renault16, Philippe E. Bayer11, Agnieszka A. Golicz11, Sahana Manoli11, Tae-Ho Lee6, Vinh Ha Dinh Thi1, Smahane Chalabi1, Qiong Hu2, Chuchuan Fan17, Reece Tollenaere11, Yunhai Lu1, Christophe Battail8, Jinxiong Shen17, Christine Sidebottom10, Xinfa Wang2, Aurélie Canaguier1, Aurélie Chauveau9, Aurélie Bérard9, G. Deniot9, Mei Guan18, Zhongsong Liu18, Fengming Sun, Yong Pyo Lim19, Eric Lyons20, Christopher D. Town5, Ian Bancroft21, Xiaowu Wang, Jinling Meng17, Jianxin Ma13, J. Chris Pires22, Graham J.W. King23, Dominique Brunel9, Régine Delourme9, Michel Renard9, Jean-Marc Aury8, Keith L. Adams15, Jacqueline Batley24, Jacqueline Batley11, Rod J. Snowdon7, Jörg Tost, David Edwards24, David Edwards11, Yongming Zhou17, Wei Hua2, Andrew G. Sharpe10, Andrew H. Paterson6, Chunyun Guan18, Patrick Wincker8, Patrick Wincker1, Patrick Wincker25 
22 Aug 2014-Science
TL;DR: The polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed, is sequenced.
Abstract: Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.

1,743 citations

Journal ArticleDOI
TL;DR: The Ogura CMS/Rfo two‐component system is a useful model for investigating nuclear–cytoplasmic interactions, as well as the physiological basis of fertility restoration, and a member of the pentatricopeptide repeat (PPR) family in Arabidopsis.
Abstract: Ogura cytoplasmic male sterility (CMS) in radish (Raphanus sativus) is caused by an aberrant mitochondrial gene, Orf138, that prevents the production of functional pollen without affecting female fertility Rfo, a nuclear gene that restores male fertility, alters the expression of Orf138 at the post-transcriptional level The Ogura CMS/Rfo two-component system is a useful model for investigating nuclear-cytoplasmic interactions, as well as the physiological basis of fertility restoration Using a combination of positional cloning and microsynteny analysis of Arabidopsis thaliana and radish, we genetically and physically delimited the Rfo locus to a 15-kb DNA segment Analysis of this segment shows that Rfo is a member of the pentatricopeptide repeat (PPR) family In Arabidopsis, this family contains more than 450 members of unknown function, although most of them are predicted to be targeted to mitochondria and chloroplasts and are thought to have roles in organellar gene expression

312 citations

Journal ArticleDOI
TL;DR: A strategy based on long reads (MinION or PromethION sequencers) and optical maps (Saphyr system) that can produce chromosome-level assemblies is described and demonstrated applicability by generating high-quality genome sequences for two new dicotyledon morphotypes.
Abstract: Plant genomes are often characterized by a high level of repetitiveness and polyploid nature. Consequently, creating genome assemblies for plant genomes is challenging. The introduction of short-read technologies 10 years ago substantially increased the number of available plant genomes. Generally, these assemblies are incomplete and fragmented, and only a few are at the chromosome scale. Recently, Pacific Biosciences and Oxford Nanopore sequencing technologies were commercialized that can sequence long DNA fragments (kilobases to megabase) and, using efficient algorithms, provide high-quality assemblies in terms of contiguity and completeness of repetitive regions1–4. However, even though genome assemblies based on long reads exhibit high contig N50s (>1 Mb), these methods are still insufficient to decipher genome organization at the chromosome level. Here, we describe a strategy based on long reads (MinION or PromethION sequencers) and optical maps (Saphyr system) that can produce chromosome-level assemblies and demonstrate applicability by generating high-quality genome sequences for two new dicotyledon morphotypes, Brassica rapa Z1 (yellow sarson) and Brassica oleracea HDEM (broccoli), and one new monocotyledon, Musa schizocarpa (banana). All three assemblies show contig N50s of >5 Mb and contain scaffolds that represent entire chromosomes or chromosome arms. Assembling genomes to chromosome scale remains a challenge. Now, a study reports a strategy based on nanopore long reads and optical maps and uses it to produce high-quality chromosome-scale assemblies for the genomes of yellow sarson, broccoli and banana.

276 citations

Journal ArticleDOI
TL;DR: It is confirmed that the very first meiosis of resynthesized plants of B. napus acts as a genome blender, with many of the meiotic-driven genetic changes transmitted to the progenies, in proportions that depend significantly on the cytoplasm background inherited from the progensitors.
Abstract: Polyploidy promotes the restructuring of merged genomes within initial generations of resynthesized Brassica napus, possibly caused by homoeologous recombination at meiosis. However, little is known about the impact of the first confrontation of two genomes at the first meiosis which could lead to genome exchanges in progeny. Here, we assessed the role of the first meiosis in the genome instability of synthetic B. napus. We used three different newly resynthesized B. napus plants and established meiotic pairing frequencies for the A and C genomes. We genotyped the three corresponding progenies in a cross to a natural B. napus on the two homoeologous A1 and C1 chromosomes. Pairing at meiosis in a set of progenies with various rearrangements was scored. Here, we confirmed that the very first meiosis of resynthesized plants of B. napus acts as a genome blender, with many of the meiotic-driven genetic changes transmitted to the progenies, in proportions that depend significantly on the cytoplasm background inherited from the progenitors. We conclude that the first meiosis generates rearrangements on both genomes and promotes subsequent restructuring in further generations. Our study advances the knowledge on the timing of genetic changes and the mechanisms that may bias their transmission.

247 citations

Journal ArticleDOI
TL;DR: The race structure of L. maculans was assessed on the basis of the analysis of 1011 isolates collected in France between 1990 and 2000, and it was suggested that the development of integrated strategies aiming at maximising the durability of novel resistance is now a priority for this pathosystem.
Abstract: Leptosphaeria maculans, the cause of stem canker of oilseed rape (OSR), exhibits gene-for-gene interactions with its host plant. The race structure of L. maculans was assessed on the basis of the analysis of 1011 isolates collected in France between 1990 and 2000, with regards to three AVR genes, AvrLm1, AvrLm2 and AvrLm4. The effect of selection pressure, due to large-scale cropping of Rlm1 cultivars, on the evolution of races of the fungus was also evaluated. The results revealed a scarcity or complete absence of isolates harbouring AvrLm2, whereas isolates harbouring AvrLm4 were present at a variable level, that was as high as 17.2–31.2% depending on the sample year and location. When obtained from rlm1 cultivars, isolates harbouring AvrLm1 always represented more than 83% of the populations until the 1997–1998 growing season. As a consequence, the Rlm1 cultivars had been highly efficient at controlling the disease and were grown on an estimated 43.7% of the total French acreage in OSR in 1998–1999. However, the increased commercial success of Rlm1 cultivars was paralleled by a decrease in the proportion of isolates harbouring AvrLm1 in 1997–1998 and 1998–1999. This resulted in less than 13% of isolates harbouring AvrLm1 in populations being collected from rlm1 cultivars in 1999 and 2000, and contributed to the loss of efficiency of the Rlm1 resistance in the field. The present study is an illustration of one round of a `boom and bust' cycle that occurred for a pathosystem where it has never been reported before. These data and the high evolutionary potential of L. maculans are fully supportive of one pathogen species with a high risk of breaking down resistance genes in OSR and suggest that the development of integrated strategies aiming at maximising the durability of novel resistance is now a priority for this pathosystem.

222 citations


Cited by
More filters
01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
Boulos Chalhoub1, Shengyi Liu2, Isobel A. P. Parkin3, Haibao Tang4, Haibao Tang5, Xiyin Wang6, Julien Chiquet1, Harry Belcram1, Chaobo Tong2, Birgit Samans7, Margot Correa8, Corinne Da Silva8, Jérémy Just1, Cyril Falentin9, Chu Shin Koh10, Isabelle Le Clainche1, Maria Bernard8, Pascal Bento8, Benjamin Noel8, Karine Labadie8, Adriana Alberti8, Mathieu Charles9, Dominique Arnaud1, Hui Guo6, Christian Daviaud, Salman Alamery11, Kamel Jabbari12, Kamel Jabbari1, Meixia Zhao13, Patrick P. Edger14, Houda Chelaifa1, David C. Tack15, Gilles Lassalle9, Imen Mestiri1, Nicolas Schnel9, Marie-Christine Le Paslier9, Guangyi Fan, Victor Renault16, Philippe E. Bayer11, Agnieszka A. Golicz11, Sahana Manoli11, Tae-Ho Lee6, Vinh Ha Dinh Thi1, Smahane Chalabi1, Qiong Hu2, Chuchuan Fan17, Reece Tollenaere11, Yunhai Lu1, Christophe Battail8, Jinxiong Shen17, Christine Sidebottom10, Xinfa Wang2, Aurélie Canaguier1, Aurélie Chauveau9, Aurélie Bérard9, G. Deniot9, Mei Guan18, Zhongsong Liu18, Fengming Sun, Yong Pyo Lim19, Eric Lyons20, Christopher D. Town5, Ian Bancroft21, Xiaowu Wang, Jinling Meng17, Jianxin Ma13, J. Chris Pires22, Graham J.W. King23, Dominique Brunel9, Régine Delourme9, Michel Renard9, Jean-Marc Aury8, Keith L. Adams15, Jacqueline Batley11, Jacqueline Batley24, Rod J. Snowdon7, Jörg Tost, David Edwards24, David Edwards11, Yongming Zhou17, Wei Hua2, Andrew G. Sharpe10, Andrew H. Paterson6, Chunyun Guan18, Patrick Wincker1, Patrick Wincker25, Patrick Wincker8 
22 Aug 2014-Science
TL;DR: The polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed, is sequenced.
Abstract: Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.

1,743 citations

Journal ArticleDOI
TL;DR: This review provides an introduction to DNA markers and the concept of polymorphism, linkage analysis and map construction, the principles of QTL analysis and how markers may be applied in breeding programs using MAS.
Abstract: Recognizing the enormous potential of DNA markers in plant breeding, many agricultural research centers and plant breeding institutes have adopted the capacity for marker development and marker-assisted selection (MAS). However, due to rapid developments in marker technology, statistical methodology for identifying quantitative trait loci (QTLs) and the jargon used by molecular biologists, the utility of DNA markers in plant breeding may not be clearly understood by non-molecular biologists. This review provides an introduction to DNA markers and the concept of polymorphism, linkage analysis and map construction, the principles of QTL analysis and how markers may be applied in breeding programs using MAS. This review has been specifically written for readers who have only a basic knowledge of molecular biology and/or plant genetics. Its format is therefore ideal for conventional plant breeders, physiologists, pathologists, other plant scientists and students.

1,588 citations

Journal ArticleDOI
TL;DR: Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenomes, suggesting asymmetric evolution.
Abstract: Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.

1,221 citations