scispace - formally typeset
Search or ask a question
Author

Regula Frauenfelder

Bio: Regula Frauenfelder is an academic researcher from Norwegian Geotechnical Institute. The author has contributed to research in topics: Permafrost & Snow. The author has an hindex of 22, co-authored 57 publications receiving 1915 citations. Previous affiliations of Regula Frauenfelder include University of Oslo & University of Zurich.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the potential response of rockglacier creep to a change in surface temperature is simulated using a one-dimensional thermomechanically coupled numerical model, and the authors conclude that increasing rock glacier temperatures may lead to a marked, but both spatially and temporally highly variablespeed-up, before asignificantlossoficecontentbymelt-outisabletoreducethedeformationrateofthefrozenmasstowardsits

220 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered that the anthropogenic influences on the atmosphere could now and for the first time represent a major contributing factor to the observed glacier shrinkage at a global scale.
Abstract: Worldwide glacier mass changes are considered to represent natural key variables within global climate-related monitoring programmes, especially with respect to strategies concerning early detection of enhanced greenhouse effects on climate. This is due to the fact that glacier mass changes provide important quantitative information on rates of change, acceleration tendencies and pre-industrial variability relating to energy exchange at the earth/athmosphere interface. During the coming decades, excess radiation income and sensible heat (a few watts per square metre) as calculated with numerical climate models are both estimated to increase by a factor of about two to four as compared to the mean of the 20th century. The rate of average annual mass loss (a few decimetres per year) measured today on mountain glaciers in various parts of the world now appears to accelerate accordingly, even though detailed interpretation of the complex processes involved remains difficult. Within the framework of secular glacier retreat and Holocene glacier fluctuations, similar rates of change and acceleration must have taken place before, i.e. during times of weak anthropogenic forcing. However, the anthropogenic influences on the atmosphere could now and for the first time represent a major contributing factor to the observed glacier shrinkage at a global scale. Problems with such assessments mainly concern aspects of statistical averaging, regional climate variability, strong differences in glacier sensitivity and relations between mass balance and cumulative glacier length change over decadal to secular time scales. Considerable progress has recently been achieved in these fields of research.

123 citations

Journal ArticleDOI
TL;DR: In this paper, a study was carried out in the Swiss Alps using two different approaches: (1) kinematic analysis of specific active rock glaciers, and (2) description of the altitudinal distribution of relict rock glaciers.
Abstract: Climate and its long-term variability govern ground thermal conditions, and for this reason represent one of the most important impacts on creeping mountain permafrost. The decoding and better understanding of the present-day morphology and distribution of rock glaciers opens up a variety of insights into past and present environmental, especially climatic, conditions on a local to regional scale. The present study was carried out in the Swiss Alps using two different approaches: (1) kinematic analysis of specific active rock glaciers, and (2) description of the altitudinal distribution of relict rock glaciers. Two theoretical shape concepts of active rock-glacier morphology were derived’ a"monomorphic" type, representing presumably undisturbed, continuous development over several millennia and a ˚polymorphic" type, reflecting a system of (possibly climatically affected) individual creep streams several centuries old. The topoclimatic-based inventory analysis indicated an average temperature increase at relict rock-glacier fronts of approximately +2°C since the time of their decay, which is a sign of rock-glacier ages reaching back to the Alpine Late Glacial. The temperature difference of some tenths of a degree Celsius found for active/inactive rock glaciers is typical for the bandwidth of Holocene climate variations. These results confirm the importance of Alpine rock glaciers as highly sensitive indicators of past temperature evolution.

111 citations

Journal ArticleDOI
TL;DR: In this paper, three different techniques for detecting and quantifying mountain permafrost creep are compared: (1) rock glacier inventory and characterization from in situ indicators, (2) space-borne radar interferometry, and (3) digital processing of repeated airborne imagery.
Abstract: In this paper three different techniques for detecting and quantifying mountain permafrost creep are compared: (1) rock glacier inventory and characterization from in situ indicators, (2) space-borne radar interferometry, and (3) digital processing of repeated airborne imagery. The specific characteristics of the three methods and their complementarity are investigated for the Fletschhorn mountain range in the Simplon/Saas valley region, Swiss Alps. We found that radar interferometry is suitable to quantify the degree of activity and the order of surface velocity of rock glaciers over large areas in one process, with the possibility to also detect very small movements of inactive and relict rock glaciers. On the other hand, aero-photogrammetry represents a valuable base for additional interpretation of the three-dimensional surface flow field (including speed, direction and change in thickness) of the most active rock glaciers. Results from radar interferometry can also form the basis for further detailed...

106 citations


Cited by
More filters
01 Jan 2016
TL;DR: The remote sensing and image interpretation is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading remote sensing and image interpretation. As you may know, people have look hundreds times for their favorite novels like this remote sensing and image interpretation, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some malicious virus inside their computer. remote sensing and image interpretation is available in our digital library an online access to it is set as public so you can get it instantly. Our book servers spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the remote sensing and image interpretation is universally compatible with any devices to read.

1,802 citations

01 Dec 2013
TL;DR: This paper found that the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent, due to changes in atmospheric circulations and precipitation patterns.
Abstract: Glacial melting in the Tibetan Plateau affects the water resources of millions of people. This study finds that—partly owing to changes in atmospheric circulations and precipitation patterns—the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent.

1,599 citations

01 Jan 2007
TL;DR: Contributing Authors: J.H. Box, D.O. Robinson, Ian Joughin, S. Smith, and D.W. Walsh.
Abstract: Contributing Authors: J. Box (USA), D. Bromwich (USA), R. Brown (Canada), J.G. Cogley (Canada), J. Comiso (USA), M. Dyurgerov (Sweden, USA), B. Fitzharris (New Zealand), O. Frauenfeld (USA, Austria), H. Fricker (USA), G. H. Gudmundsson (UK, Iceland), C. Haas (Germany), J.O. Hagen (Norway), C. Harris (UK), L. Hinzman (USA), R. Hock (Sweden), M. Hoelzle (Switzerland), P. Huybrechts (Belgium), K. Isaksen (Norway), P. Jansson (Sweden), A. Jenkins (UK), Ian Joughin (USA), C. Kottmeier (Germany), R. Kwok (USA), S. Laxon (UK), S. Liu (China), D. MacAyeal (USA), H. Melling (Canada), A. Ohmura (Switzerland), A. Payne (UK), T. Prowse (Canada), B.H. Raup (USA), C. Raymond (USA), E. Rignot (USA), I. Rigor (USA), D. Robinson (USA), D. Rothrock (USA), S.C. Scherrer (Switzerland), S. Smith (Canada), O. Solomina (Russian Federation), D. Vaughan (UK), J. Walsh (USA), A. Worby (Australia), T. Yamada (Japan), L. Zhao (China)

962 citations

Journal ArticleDOI
23 Aug 2012-Nature
TL;DR: Satellite laser altimetry and a global elevation model are used to show widespread glacier wastage in the eastern, central and south-western parts of the HKKH during 2003–08 and show indirect evidence of a complex pattern of glacial responses in reaction to heterogeneous climate change signals.
Abstract: Glaciers are among the best terrestrial climate indicators, an important water resource in mountains1,2 and a major contributor to global sea level rise3,4. In the Hindu Kush - Karakoram - Himalaya region (HKKH), a paucity of appropriate glacier data has prevented a comprehensive assessment of current regional mass balance5. However, there are indirect evidences of a complex pattern of glacial responses5-8 in reaction to heterogeneous climate change signals9. Here, we provide the first coherent data set of detailed glacier thickness changes over the HKKH during 2003-2009 by combining satellite laser altimetry and a global elevation model. In the eastern, central and south-western parts of the HKKH, glacier wastage is widespread with regional thinning rates up to 0.66 ± 0.09 m a-1 in the Jammu-Kashmir region. Conversely, in the Karakoram, glaciers are close to balance with only a slight thinning of 0.07 ± 0.04 m a-1. Regionally averaged thinning rates under debris-mantled ice are similar to those of clean ice despite insulation by debris covers. The 2003-2008 specific mass balance for our HKKH study region is -0.21 ± 0.05 m a-1 water equivalent (WE), significantly less negative than the global average of ~ -0.7 m a-1 WE for glaciers and ice caps4,10. This difference is mainly an effect of the balanced glacier mass budget in the Karakoram. The corresponding HKKH sea level contribution is +0.035 ± 0.009 mm a-1 amounting to 1% of the present-day sea level rise11. Our 2003-2008 mass budget of -12.8 ± 3.5 Gt a-1 is more negative than recent satellite gravimetry based estimates of -5 ± 6 Gt a-1 over 2003-2010 (ref. 12). For the mountain catchments of the Indus and Ganges basins13, the glacier imbalance contributes ~3.5% and ~2.0%, respectively, to the annual average river discharge13, and up to ~10% for the Upper Indus basin14.

961 citations