scispace - formally typeset
Search or ask a question
Author

Reid M. Pinchback

Bio: Reid M. Pinchback is an academic researcher from Broad Institute. The author has contributed to research in topics: Cancer & SCNA. The author has an hindex of 4, co-authored 6 publications receiving 5854 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A new version of the database, MSigDB 3.0, is reported, with over 6700 gene sets, a complete revision of the collection of canonical pathways and experimental signatures from publications, enhanced annotations and upgrades to the web site.
Abstract: Motivation: Well-annotated gene sets representing the universe of the biological processes are critical for meaningful and insightful interpretation of large-scale genomic data. The Molecular Signatures Database (MSigDB) is one of the most widely used repositories of such sets. Results: We report the availability of a new version of the database, MSigDB 3.0, with over 6700 gene sets, a complete revision of the collection of canonical pathways and experimental signatures from publications, enhanced annotations and upgrades to the web site. Availability and Implementation: MSigDB is freely available for non-commercial use at http://www.broadinstitute.org/msigdb. Contact: gsea@broadinstitute.org

4,128 citations

Journal ArticleDOI
Rameen Beroukhim, Craig H. Mermel1, Craig H. Mermel2, Dale Porter3, Guo Wei1, Soumya Raychaudhuri1, Soumya Raychaudhuri4, Jerry Donovan3, Jordi Barretina2, Jordi Barretina1, Jesse S. Boehm1, Jennifer Dobson1, Jennifer Dobson2, Mitsuyoshi Urashima5, Kevin T. Mc Henry3, Reid M. Pinchback1, Azra H. Ligon4, Yoon Jae Cho6, Leila Haery2, Leila Haery1, Heidi Greulich, Michael R. Reich1, Wendy Winckler1, Michael S. Lawrence1, Barbara A. Weir1, Barbara A. Weir2, Kumiko E. Tanaka1, Kumiko E. Tanaka2, Derek Y. Chiang1, Derek Y. Chiang7, Derek Y. Chiang2, Adam J. Bass2, Adam J. Bass1, Adam J. Bass4, Alice Loo3, Carter Hoffman1, Carter Hoffman2, John R. Prensner1, John R. Prensner2, Ted Liefeld1, Qing Gao1, Derek Yecies2, Sabina Signoretti2, Sabina Signoretti4, Elizabeth A. Maher8, Frederic J. Kaye, Hidefumi Sasaki9, Joel E. Tepper7, Jonathan A. Fletcher4, Josep Tabernero10, José Baselga10, Ming-Sound Tsao11, Francesca Demichelis12, Mark A. Rubin12, Pasi A. Jänne4, Pasi A. Jänne2, Mark J. Daly2, Mark J. Daly1, Carmelo Nucera13, Ross L. Levine14, Benjamin L. Ebert1, Benjamin L. Ebert2, Benjamin L. Ebert4, Stacey Gabriel1, Anil K. Rustgi15, Cristina R. Antonescu14, Marc Ladanyi14, Anthony Letai2, Levi A. Garraway2, Levi A. Garraway1, Massimo Loda4, Massimo Loda2, David G. Beer16, Lawrence D. True17, Aikou Okamoto5, Scott L. Pomeroy6, Samuel Singer14, Todd R. Golub18, Todd R. Golub2, Todd R. Golub1, Eric S. Lander19, Eric S. Lander1, Eric S. Lander2, Gad Getz1, William R. Sellers3, Matthew Meyerson1, Matthew Meyerson2 
18 Feb 2010-Nature
TL;DR: It is demonstrated that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival, and a large majority of SCNAs identified in individual cancer types are present in several cancer types.
Abstract: A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-kappaBeta pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.

3,375 citations

Rameen Beroukhim, Craig H. Mermel1, Craig H. Mermel2, Dale Porter3, Guo Wei1, Soumya Raychaudhuri1, Soumya Raychaudhuri4, Jerry Donovan3, Jordi Barretina2, Jordi Barretina1, Jesse S. Boehm1, Jennifer Dobson1, Jennifer Dobson2, Mitsuyoshi Urashima5, Kevin T. Mc Henry3, Reid M. Pinchback1, Azra H. Ligon4, Yoon Jae Cho6, Leila Haery1, Leila Haery2, Heidi Greulich, Michael R. Reich1, Wendy Winckler1, Michael S. Lawrence1, Barbara A. Weir2, Barbara A. Weir1, Kumiko E. Tanaka1, Kumiko E. Tanaka2, Derek Y. Chiang1, Derek Y. Chiang7, Derek Y. Chiang2, Adam J. Bass1, Adam J. Bass2, Adam J. Bass4, Alice Loo3, Carter Hoffman2, Carter Hoffman1, John R. Prensner1, John R. Prensner2, Ted Liefeld1, Qing Gao1, Derek Yecies2, Sabina Signoretti4, Sabina Signoretti2, Elizabeth A. Maher8, Frederic J. Kaye, Hidefumi Sasaki9, Joel E. Tepper7, Jonathan A. Fletcher4, Josep Tabernero10, José Baselga10, Ming-Sound Tsao11, Francesca Demichelis12, Mark A. Rubin12, Pasi A. Jänne4, Pasi A. Jänne2, Mark J. Daly2, Mark J. Daly1, Carmelo Nucera13, Ross L. Levine14, Benjamin L. Ebert2, Benjamin L. Ebert1, Benjamin L. Ebert4, Stacey Gabriel1, Anil K. Rustgi15, Cristina R. Antonescu14, Marc Ladanyi14, Anthony Letai2, Levi A. Garraway2, Levi A. Garraway1, Massimo Loda4, Massimo Loda2, David G. Beer16, Lawrence D. True17, Aikou Okamoto5, Scott L. Pomeroy6, Samuel Singer14, Todd R. Golub18, Todd R. Golub1, Todd R. Golub2, Eric S. Lander1, Eric S. Lander2, Eric S. Lander19, Gad Getz1, William R. Sellers3, Matthew Meyerson1, Matthew Meyerson2 
01 Feb 2010
TL;DR: In this paper, the authors identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions.
Abstract: A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-kappaBeta pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.

149 citations

Proceedings ArticleDOI
TL;DR: It is found that response to topoisomerase 1 inhibitors seem to be driven by expression of a single gene, and tissue lineage is a key predictor for sensitivity to certain compounds, providing rationale for clinical trials of these drugs in particular cancer types.
Abstract: Comprehensive genomic characterization of cancer is proceeding at a rapidly accelerating pace, mainly due to the expanded use of massively parallel sequencing. Despite the promise of cancer genomics, many cancer drugs still fail in the clinic due to nonresponsive patients and this translates into a significant unmet medical need. Accurate predictions of which patients are more likely to respond to drugs in development could speed clinical trials and personalize treatments. Here we propose the use of a compendium of experimentally tractable cancer model systems, ∼1000 human genomically-annotated cancer cell lines (at the level of gene expression, DNA copy number alterations and mutations), coupled with pharmacological profiling, to systematically link genetic and transcriptional features to drug response. This resource, the Cancer Cell Line Encyclopedia (CCLE), is available online at www.broadinstitute.org/ccle. Through computational predictive modeling we have both rediscovered molecular features that predict response to several drugs and also uncovered a number of novel potential biomarkers of sensitivity and resistance to targeted agents and chemotherapy drugs. For instance, we have found that response to topoisomerase 1 inhibitors seem to be driven by expression of a single gene. We have also observed that tissue lineage is a key predictor for sensitivity to certain compounds, providing rationale for clinical trials of these drugs in particular cancer types. Our cell line-based platform provides a valuable tool for the development of personalized cancer medicine, revealing critical tumor dependencies and helping to stratify patients for clinical trials. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 5455. doi:10.1158/1538-7445.AM2011-5455

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations

Journal ArticleDOI
TL;DR: A unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs is presented.
Abstract: Recent advances in sequencing technology make it possible to comprehensively catalogue genetic variation in population samples, creating a foundation for understanding human disease, ancestry and evolution. The amounts of raw data produced are prodigious and many computational steps are required to translate this output into high-quality variant calls. We present a unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs. Our process includes (1) initial read mapping; (2) local realignment around indels; (3) base quality score recalibration; (4) SNP discovery and genotyping to find all potential variants; and (5) machine learning to separate true segregating variation from machine artifacts common to next-generation sequencing technologies. We discuss the application of these tools, instantiated in the Genome Analysis Toolkit (GATK), to deep whole-genome, whole-exome capture, and multi-sample low-pass (~4×) 1000 Genomes Project datasets.

10,056 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: Node2vec as mentioned in this paper learns a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes by using a biased random walk procedure.
Abstract: Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node's network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks.

7,072 citations

Journal ArticleDOI
TL;DR: The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution.
Abstract: Data visualization is an essential component of genomic data analysis. However, the size and diversity of the data sets produced by today’s sequencing and array-based profiling methods present major challenges to visualization tools. The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution. A key characteristic of IGV is its focus on the integrative nature of genomic studies, with support for both array-based and next-generation sequencing data, and the integration of clinical and phenotypic data. Although IGV is often used to view genomic data from public sources, its primary emphasis is to support researchers who wish to visualize and explore their own data sets or those from colleagues. To that end, IGV supports flexible loading of local and remote data sets, and is optimized to provide high-performance data visualization and exploration on standard desktop systems. IGV is freely available for download from http://www.broadinstitute.org/igv, under a GNU LGPL open-source license.

6,930 citations

Journal ArticleDOI
29 Mar 2012-Nature
TL;DR: The results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents and the generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.
Abstract: The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

6,417 citations