scispace - formally typeset
Search or ask a question
Author

Reimar Johne

Other affiliations: Leipzig University
Bio: Reimar Johne is an academic researcher from Federal Institute for Risk Assessment. The author has contributed to research in topics: Hepatitis E virus & Hepatitis E. The author has an hindex of 49, co-authored 151 publications receiving 8386 citations. Previous affiliations of Reimar Johne include Leipzig University.


Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on the general properties of PCR inhibitors and their occurrence in specific matrices and strategies for their removal from the sample and for quality control by assessing their influence on the individual PCR test are presented.
Abstract: The polymerase chain reaction (PCR) is increasingly used as the standard method for detection and characterization of microorganisms and genetic markers in a variety of sample types. However, the method is prone to inhibiting substances, which may be present in the analysed sample and which may affect the sensitivity of the assay or even lead to false-negative results. The PCR inhibitors represent a diverse group of substances with different properties and mechanisms of action. Some of them are predominantly found in specific types of samples thus necessitating matrix-specific protocols for preparation of nucleic acids before PCR. A variety of protocols have been developed to remove the PCR inhibitors. This review focuses on the general properties of PCR inhibitors and their occurrence in specific matrices. Strategies for their removal from the sample and for quality control by assessing their influence on the individual PCR test are presented and discussed.

1,408 citations

Journal ArticleDOI
TL;DR: With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification /G- and P-type.
Abstract: In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. The Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 51 new genotypes: as of April 2011, new genotypes for VP7 (G20-G27), VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 (A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14) and NSP5/6 (H7-H11) have been defined for RV strains recovered from humans, cows, pigs, horses, mice, South American camelids (guanaco), chickens, turkeys, pheasants, bats and a sugar glider. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including, but not limited to, the individual gene genotypes and epidemiological and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data.

836 citations

Journal ArticleDOI
TL;DR: Indirect immunofluorescence techniques targeting the rotavirus (RV) protein VP6 are used to differentiate RV species and a potential new RV species, ADRV-N, has been described.
Abstract: Indirect immunofluorescence techniques targeting the rotavirus (RV) protein VP6 are used to differentiate RV species. The ICTV recognizes RV species A to E and two tentative species, F and G. A potential new RV species, ADRV-N, has been described. Phylogenetic trees and pairwise identity frequency graphs were constructed with more than 400 available VP6 sequences and seven newly determined VP6 sequences of RVD strains. All RV species were separated into distinct phylogenetic clusters. An amino acid sequence cutoff value of 53% firmly permitted differentiation of RV species, and ADRV-N was tentatively assigned to a novel RV species H (RVH).

347 citations

Journal ArticleDOI
TL;DR: A table of proposed complete genome reference sequences for each hepatitis E virus subtype is provided to facilitate communication between researchers and help clarify the epidemiology of this important human pathogen.
Abstract: The nomenclature of hepatitis E virus (HEV) subtypes is inconsistent and makes comparison of different studies problematic. We have provided a table of proposed complete genome reference sequences for each subtype. The criteria for subtype assignment vary between different genotypes and methodologies, and so a conservative pragmatic approach has been favoured. Updates to this table will be posted on the International Committee on Taxonomy of Viruses website (http://talk.ictvonline.org/r.ashx?C). The use of common reference sequences will facilitate communication between researchers and help clarify the epidemiology of this important human pathogen. This subtyping procedure might be adopted for other taxa of the genus Orthohepevirus.

333 citations

Journal ArticleDOI
TL;DR: A nested broad-spectrum RT-PCR protocol was developed capable of detecting different HEV types including those derived from wild boar and chicken and its suitability to serve in a laboratory rat animal model for human hepatitis E is assessed.
Abstract: Hepatitis E is a rare human disease in developed countries. It is caused by hepatitis E virus (HEV), which is probably transmitted zoonotically to humans from domestic pigs and wild boars. Multiple reports on the detection of HEV-specific antibodies in rats have suggested the presence of an HEV-related agent; however, infectious virus or a viral genome has not been demonstrated so far. Here, a nested broad-spectrum RT-PCR protocol was developed capable of detecting different HEV types including those derived from wild boar and chicken. Screening of 30 faecal samples from wild Norway rats (Rattus norvegicus) from Hamburg (Germany) resulted in the detection of two sequences with similarities to human, mammalian and avian HEV. Virus particles with a morphology reminiscent of HEV were demonstrated by immunoelectron microscopy in one of these samples and the virus was tentatively designated rat HEV. Genome fragments with sizes of 4019 and 1545 nt were amplified from two samples. Sequence comparison with human and avian strains revealed only 59.9 and 49.9 % sequence identity, respectively. Similarly, the deduced amino acid sequence for the complete capsid protein had 56.2 and 42.9 % identity with human and avian strains, respectively. Inoculation of the samples onto three different permanent rat liver cell lines did not result in detectable virus replication as assayed by RT-PCR with cells of the fifth virus passage. Further investigations are necessary to clarify the zoonotic potential of rat HEV and to assess its suitability to serve in a laboratory rat animal model for human hepatitis E.

304 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: The approach to utilizing available RNA-Seq and other data types in the authors' manual curation process for vertebrate, plant, and other species is summarized, and a new direction for prokaryotic genomes and protein name management is described.
Abstract: The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

4,104 citations

Journal ArticleDOI
19 May 2016-Cell
TL;DR: A pipeline for the rapid design, assembly, and validation of cell-free, paper-based sensors for the detection of the Zika virus RNA genome is reported, which detect clinically relevant concentrations of Zika virus sequences and demonstrate specificity against closely related Dengue virus sequences.

1,005 citations

Journal ArticleDOI
TL;DR: With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification /G- and P-type.
Abstract: In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. The Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 51 new genotypes: as of April 2011, new genotypes for VP7 (G20-G27), VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 (A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14) and NSP5/6 (H7-H11) have been defined for RV strains recovered from humans, cows, pigs, horses, mice, South American camelids (guanaco), chickens, turkeys, pheasants, bats and a sugar glider. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including, but not limited to, the individual gene genotypes and epidemiological and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data.

836 citations

Journal ArticleDOI
TL;DR: The fundamental engineering principles used to design RCA nanotechnologies are introduced, the recently developed RCA-based diagnostics and bioanalytical tools are discussed, and the use of RCA to construct multivalent molecular scaffolds and nanostructures for applications in biology, diagnostic and therapeutics is summarized.
Abstract: Rolling circle amplification (RCA) is an isothermal enzymatic process where a short DNA or RNA primer is amplified to form a long single stranded DNA or RNA using a circular DNA template and special DNA or RNA polymerases. The RCA product is a concatemer containing tens to hundreds of tandem repeats that are complementary to the circular template. The power, simplicity, and versatility of the DNA amplification technique have made it an attractive tool for biomedical research and nanobiotechnology. Traditionally, RCA has been used to develop sensitive diagnostic methods for a variety of targets including nucleic acids (DNA, RNA), small molecules, proteins, and cells. RCA has also attracted significant attention in the field of nanotechnology and nanobiotechnology. The RCA-produced long, single-stranded DNA with repeating units has been used as template for the periodic assembly of nanospecies. Moreover, since RCA products can be tailor-designed by manipulating the circular template, RCA has been employed to generate complex DNA nanostructures such as DNA origami, nanotubes, nanoribbons and DNA based metamaterials. These functional RCA based nanotechnologies have been utilized for biodetection, drug delivery, designing bioelectronic circuits and bioseparation. In this review, we introduce the fundamental engineering principles used to design RCA nanotechnologies, discuss recently developed RCA-based diagnostics and bioanalytical tools, and summarize the use of RCA to construct multivalent molecular scaffolds and nanostructures for applications in biology, diagnostics and therapeutics.

788 citations