scispace - formally typeset
Search or ask a question
Author

Rein Drenkhan

Bio: Rein Drenkhan is an academic researcher from Estonian University of Life Sciences. The author has contributed to research in topics: Biology & Medicine. The author has an hindex of 23, co-authored 63 publications receiving 3061 citations.


Papers
More filters
Journal ArticleDOI
28 Nov 2014-Science
TL;DR: Diversity of most fungal groups peaked in tropical ecosystems, but ectomycorrhizal fungi and several fungal classes were most diverse in temperate or boreal ecosystems, and manyfungal groups exhibited distinct preferences for specific edaphic conditions (such as pH, calcium, or phosphorus).
Abstract: Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.

2,346 citations

Journal ArticleDOI
Sergei Põlme1, Sergei Põlme2, Kessy Abarenkov2, R. Henrik Nilsson3, Björn D. Lindahl4, Karina E. Clemmensen4, Håvard Kauserud5, Nhu H. Nguyen6, Rasmus Kjøller7, Scott T. Bates8, Petr Baldrian9, Tobias Guldberg Frøslev7, Kristjan Adojaan1, Alfredo Vizzini10, Ave Suija1, Donald H. Pfister11, Hans Otto Baral, Helle Järv12, Hugo Madrid13, Hugo Madrid14, Jenni Nordén, Jian-Kui Liu15, Julia Pawłowska16, Kadri Põldmaa1, Kadri Pärtel1, Kadri Runnel1, Karen Hansen17, Karl-Henrik Larsson, Kevin D. Hyde18, Marcelo Sandoval-Denis, Matthew E. Smith19, Merje Toome-Heller20, Nalin N. Wijayawardene, Nelson Menolli21, Nicole K. Reynolds19, Rein Drenkhan22, Sajeewa S. N. Maharachchikumbura15, Tatiana Baptista Gibertoni23, Thomas Læssøe7, William J. Davis24, Yuri Tokarev, Adriana Corrales25, Adriene Mayra Soares, Ahto Agan1, A. R. Machado23, Andrés Argüelles-Moyao26, Andrew P. Detheridge, Angelina de Meiras-Ottoni23, Annemieke Verbeken27, Arun Kumar Dutta28, Bao-Kai Cui29, C. K. Pradeep, César Marín30, Daniel E. Stanton, Daniyal Gohar1, Dhanushka N. Wanasinghe31, Eveli Otsing1, Farzad Aslani1, Gareth W. Griffith, Thorsten Lumbsch32, Hans-Peter Grossart33, Hans-Peter Grossart34, Hossein Masigol35, Ina Timling36, Inga Hiiesalu1, Jane Oja1, John Y. Kupagme1, József Geml, Julieta Alvarez-Manjarrez26, Kai Ilves1, Kaire Loit22, Kalev Adamson22, Kazuhide Nara37, Kati Küngas1, Keilor Rojas-Jimenez38, Krišs Bitenieks39, Laszlo Irinyi40, Laszlo Irinyi41, Laszlo Nagy, Liina Soonvald22, Li-Wei Zhou31, Lysett Wagner34, M. Catherine Aime8, Maarja Öpik1, María Isabel Mujica30, Martin Metsoja1, Martin Ryberg42, Martti Vasar1, Masao Murata37, Matthew P. Nelsen32, Michelle Cleary4, Milan C. Samarakoon18, Mingkwan Doilom31, Mohammad Bahram1, Mohammad Bahram4, Niloufar Hagh-Doust1, Olesya Dulya1, Peter R. Johnston43, Petr Kohout9, Qian Chen31, Qing Tian18, Rajasree Nandi44, Rasekh Amiri1, Rekhani H. Perera18, Renata dos Santos Chikowski23, Renato Lucio Mendes-Alvarenga23, Roberto Garibay-Orijel26, Robin Gielen1, Rungtiwa Phookamsak31, Ruvishika S. Jayawardena18, Saleh Rahimlou1, Samantha C. Karunarathna31, Saowaluck Tibpromma31, Shawn P. Brown45, Siim-Kaarel Sepp1, Sunil Mundra5, Sunil Mundra46, Zhu Hua Luo47, Tanay Bose48, Tanel Vahter1, Tarquin Netherway4, Teng Yang31, Tom W. May49, Torda Varga, Wei Li50, Victor R. M. Coimbra23, Virton Rodrigo Targino de Oliveira23, Vitor Xavier de Lima23, Vladimir S. Mikryukov1, Yong-Zhong Lu51, Yosuke Matsuda52, Yumiko Miyamoto53, Urmas Kõljalg2, Urmas Kõljalg1, Leho Tedersoo2, Leho Tedersoo1 
University of Tartu1, American Museum of Natural History2, University of Gothenburg3, Swedish University of Agricultural Sciences4, University of Oslo5, University of Hawaii at Manoa6, University of Copenhagen7, Purdue University8, Academy of Sciences of the Czech Republic9, University of Turin10, Harvard University11, Synlab Group12, Universidad Santo Tomás13, Universidad Mayor14, University of Electronic Science and Technology of China15, University of Warsaw16, Swedish Museum of Natural History17, Mae Fah Luang University18, University of Florida19, Laos Ministry of Agriculture and Forestry20, São Paulo Federal Institute of Education, Science and Technology21, Estonian University of Life Sciences22, Federal University of Pernambuco23, United States Department of Energy24, Del Rosario University25, National Autonomous University of Mexico26, Ghent University27, West Bengal State University28, Beijing Forestry University29, Pontifical Catholic University of Chile30, Chinese Academy of Sciences31, Field Museum of Natural History32, University of Potsdam33, Leibniz Association34, University of Gilan35, University of Alaska Fairbanks36, University of Tokyo37, University of Costa Rica38, Forest Research Institute39, Westmead Hospital40, University of Sydney41, Uppsala University42, Landcare Research43, University of Chittagong44, University of Memphis45, United Arab Emirates University46, Ministry of Land and Resources of the People's Republic of China47, University of Pretoria48, Royal Botanic Gardens49, Ocean University of China50, Guizhou University51, Mie University52, Hokkaido University53
TL;DR: Fungal traits and character database FungalTraits operating at genus and species hypothesis levels is presented in this article, which includes 17 lifestyle related traits of fungal and Stramenopila genera.
Abstract: The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold.

245 citations

Journal ArticleDOI
01 Jul 2020-Forests
TL;DR: The findings reported in this review will support countries that are currently free of F. circinatum in implementing effective procedures and restrictions and prevent further spread of the pathogen.
Abstract: Fusarium circinatum, the causal agent of pine pitch canker (PPC), is currently one of the most important threats of Pinus spp. globally. This pathogen is known in many pine-growing regions, including natural and planted forests, and can affect all life stages of trees, from emerging seedlings to mature trees. Despite the importance of PPC, the global distribution of F. circinatum is poorly documented, and this problem is also true of the hosts within countries that are affected. The aim of this study was to review the global distribution of F. circinatum, with a particular focus on Europe. We considered (1) the current and historical pathogen records, both positive and negative, based on confirmed reports from Europe and globally; (2) the genetic diversity and population structure of the pathogen; (3) the current distribution of PPC in Europe, comparing published models of predicted disease distribution; and (4) host susceptibility by reviewing literature and generating a comprehensive list of known hosts for the fungus. These data were collated from 41 countries and used to compile a specially constructed geo-database. A review of 6297 observation records showed that F. circinatum and the symptoms it causes on conifers occurred in 14 countries, including four in Europe, and is absent in 28 countries. Field observations and experimental data from 138 host species revealed 106 susceptible host species including 85 Pinus species, 6 non-pine tree species and 15 grass and herb species. Our data confirm that susceptibility to F. circinatum varies between different host species, tree ages and environmental characteristics. Knowledge on the geographic distribution, host range and the relative susceptibility of different hosts is essential for disease management, mitigation and containment strategies. The findings reported in this review will support countries that are currently free of F. circinatum in implementing effective procedures and restrictions and prevent further spread of the pathogen.

143 citations

Journal ArticleDOI
TL;DR: A concerted effort was reported on to identify high-quality reference sequences for various plant pathogenic fungi and to re-annotate incorrectly or insufficiently annotated public ITS sequences from these fungal lineages, to enrich the sequences with geographical and ecological metadata.
Abstract: Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult. Molecular (DNA sequence) data have emerged as crucial information for the taxonomic identification of plant pathogenic fungi, with the nuclear ribosomal internal transcribed spacer (ITS) region being the most popular marker. However, international nucleotide sequence databases are accumulating numerous sequences of compromised or low-resolution taxonomic annotations and substandard technical quality, making their use in the molecular identification of plant pathogenic fungi problematic. Here we report on a concerted effort to identify high-quality reference sequences for various plant pathogenic fungi and to re-annotate incorrectly or insufficiently annotated public ITS sequences from these fungal lineages. A third objective was to enrich the sequences with geographical and ecological metadata. The results – a total of 31,954 changes – are incorporated in and made available through the UNITE database for molecular identification of fungi (http://unite.ut.ee), including standalone FASTA files of sequence data for local BLAST searches, use in the next-generation sequencing analysis platforms QIIME and mothur, and related applications. The present initiative is just a beginning to cover the wide spectrum of plant pathogenic fungi, and we invite all researchers with pertinent expertise to join the annotation effort.

126 citations

Journal ArticleDOI
TL;DR: It is found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups, and the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations.
Abstract: Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularly Pinus sylvestris, Picea abies, and Populus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations.

97 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Fungi typically live in highly diverse communities composed of multiple ecological guilds, and FUNGuild is a tool that can be used to taxonomically parse fungal OTUs by ecological guild independent of sequencing platform or analysis pipeline.

2,290 citations

Journal ArticleDOI
TL;DR: Although most soil microorganisms remain undescribed, the field is now poised to identify how to manipulate and manage the soil microbiome to increase soil fertility, improve crop production and improve the understanding of how terrestrial ecosystems will respond to environmental change.
Abstract: Soil microorganisms are clearly a key component of both natural and managed ecosystems. Despite the challenges of surviving in soil, a gram of soil can contain thousands of individual microbial taxa, including viruses and members of all three domains of life. Recent advances in marker gene, genomic and metagenomic analyses have greatly expanded our ability to characterize the soil microbiome and identify the factors that shape soil microbial communities across space and time. However, although most soil microorganisms remain undescribed, we can begin to categorize soil microorganisms on the basis of their ecological strategies. This is an approach that should prove fruitful for leveraging genomic information to predict the functional attributes of individual taxa. The field is now poised to identify how we can manipulate and manage the soil microbiome to increase soil fertility, improve crop production and improve our understanding of how terrestrial ecosystems will respond to environmental change.

1,720 citations

Journal ArticleDOI
TL;DR: UNITE is a web-based database and sequence management environment for the molecular identification of fungi that targets the formal fungal barcode—the nuclear ribosomal internal transcribed spacer region—and offers all public fungal ITS sequences for reference.
Abstract: Alfred P. Sloan Foundation [G-2015-14062]; Swedish Research Council of Environment, Agricultural Sciences, and Spatial Planning [FORMAS, 215-2011-498]; European Regional Development Fund (Centre of Excellence EcolChange) [TK131]; Estonian Research Council [IUT20-30]. Funding for open access charge: Swedish Research Council of Environment, Agricultural Sciences and Spatial Planning.

1,674 citations

Journal ArticleDOI
TL;DR: Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities, and network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks.
Abstract: Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.

1,223 citations

Journal ArticleDOI
TL;DR: The findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.
Abstract: Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.

1,119 citations