scispace - formally typeset
Search or ask a question
Author

Reinhold Jahn

Other affiliations: University of Hohenheim
Bio: Reinhold Jahn is an academic researcher from Martin Luther University of Halle-Wittenberg. The author has contributed to research in topics: Soil water & Soil organic matter. The author has an hindex of 35, co-authored 96 publications receiving 5277 citations. Previous affiliations of Reinhold Jahn include University of Hohenheim.


Papers
More filters
Journal ArticleDOI
15 Jun 2010-Geoderma
TL;DR: In paddy soils, the management-induced, microbially mediated redox processes control the dynamics of soil minerals and soil organic matter, which are strongly related to the microbial accessibility of C and N, but also of Fe as discussed by the authors.

869 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed pool size and isotopic composition (14C, 13C) of mineral-protected and recalcitrant organic carbon (OC) in 12 subsurface horizons from 10 acidic forest soils, showing that stabilization of OM by interaction with poorly crystalline minerals and polymeric metal species is the most important mechanism for preservation of OM in these acid subsoil horizons.
Abstract: Soil organic matter (OM) can be stabilized against decomposition by association with minerals, by its inherent recalcitrance and by occlusion in aggregates. However, the relative contribution of these factors to OM stabilization is yet unknown. We analyzed pool size and isotopic composition (14C, 13C) of mineral-protected and recalcitrant OM in 12 subsurface horizons from 10 acidic forest soils. The results were related to properties of the mineral phase and to OM composition as revealed by CPMAS 13C-NMR and CuO oxidation. Stable OM was defined as that material which survived treatment of soils with 6 wt% sodium hypochlorite (NaOCl). Mineral-protected OM was extracted by subsequent dissolution of minerals by 10% hydrofluoric acid (HF). Organic matter resistant against NaOCl and insoluble in HF was considered as recalcitrant OM. Hypochlorite removed primarily 14C-modern OM. Of the stable organic carbon (OC), amounting to 2.4–20.6 g kg−1 soil, mineral dissolution released on average 73%. Poorly crystalline Fe and Al phases (Feo, Alo) and crystalline Fe oxides (Fed−o) explained 86% of the variability of mineral-protected OC. Atomic Cp/(Fe+Al)p ratios of 1.3–6.5 suggest that a portion of stable OM was associated with polymeric Fe and Al species. Recalcitrant OC (0.4–6.5 g kg−1 soil) contributed on average 27% to stable OC and the amount was not correlated with any mineralogical property. Recalcitrant OC had lower Δ14C and δ13C values than mineral-protected OC and was mainly composed of aliphatic (56%) and O-alkyl (13%) C moieties. Lignin phenols were only present in small amounts in either mineral-protected or recalcitrant OM (mean 4.3 and 0.2 g kg−1 OC). The results confirm that stabilization of OM by interaction with poorly crystalline minerals and polymeric metal species is the most important mechanism for preservation of OM in these acid subsoil horizons.

703 citations

Journal Article
TL;DR: In this article, the authors compared the performance of three most commonly used reagents for organic matter removal: hydrogen peroxide (H 2 O 2 ), sodium hypochlorite (NaOCI) and disodium peroxodisulfate (Na 2 S 2 O 8 ).
Abstract: We compare the performance of three most accepted reagents for organic matter removal: hydrogen peroxide (H 2 O 2 ), sodium hypochlorite (NaOCI) and disodium peroxodisulfate (Na 2 S 2 O 8 ). Removal of organic matter from soil is mostly incomplete with the efficiency of removal depending on reaction conditions and sample properties. Generally, NaOCI and Na 2 S 2 O 8 are more effective in organic C removal than H 2 O 2 . Alkaline conditions and additives favoring dispersion and/or desorption of organic matter, such as sodium pyrophosphate, seem to be crucial for C removal. Pyrophosphate and additives for pH control (bicarbonate) may irreversibly adsorb to mineral surfaces. In soils with a large proportion of organic matter bound to the mineral matrix, for example subsoils, or rich in clay-sized minerals (Fe oxides, poorly crystalline Fe and Al phases, expandable phyllosilicates), C removal can be little irrespective of the reagents used. Residual organic C seems to seems to represent largely refractory organic matter, and comprises mainly pyrogenic materials and aliphatic compounds. If protected by close association with minerals, other organic constituents such as low-molecular weight carboxylic acids, lignin-derived and N-containing compounds may escape chemical destruction. For determination of mineral phase properties, treatment with H 2 O 2 should be avoided since it may promote organic-assisted dissolution of poorly crystalline minerals at low pH, disintegration of expandable clay minerals, and transformation of vermiculite into mica-like products due to NH + 4 fixation. Sodium hypochlorite and Na 2 S 2 O 8 are less harmful for minerals than H 2 O 2 . While the NaOCI procedure (pH 9.5) may dissolve Al hydroxides, alkaline conditions favor the precipitation of metals released upon destruction of organic matter. Prolonged heating to >40°C during any treatment may transform poorly crystalline minerals into more crystalline ones. Sodium hypochlorite can be used at 25°C, thus preventing heat-induced mineral alteration.

417 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the biodegradation of OM bound to goethite (α-FeOOH), pyrophyllite, and vermiculite via specific mechanisms as estimated from OC uptake in different background electrolytes and operationally defined as 'ligand exchange', 'Ca2+ bridging', and 'van der Waals forces'.

371 citations

Journal ArticleDOI
TL;DR: In this paper, the amount of hydroxyl ions released after exposure to NaF solution was used to establish a reactivity gradient spanning 12 subsoil horizons collected from 10 different locations.
Abstract: Summary Soil minerals are known to influence the biological stability of soil organic matter (SOM). Our study aimed to relate properties of the mineral matrix to its ability to protect organic C against decomposition in acid soils. We used the amount of hydroxyl ions released after exposure to NaF solution to establish a reactivity gradient spanning 12 subsoil horizons collected from 10 different locations. The subsoil horizons represent six soil orders and diverse geological parent materials. Phyllosilicates were characterized by X-ray diffraction and pedogenic oxides by selective dissolution procedures. The organic carbon (C) remaining after chemical removal of an oxidizable fraction of SOM with NaOCl solution was taken to represent a stable organic carbon pool. Stable organic carbon was confirmed as older than bulk organic carbon by a smaller radiocarbon (14C) content after oxidation in all 12 soils. The amount of stable organic C did not depend on clay content or the content of dithionite–citrate-extractable Fe. The combination of oxalate-extractable Fe and Al explained the greatest amount of variation in stable organic C (R2 = 0.78). Our results suggest that in acid soils, organic matter is preferentially protected by interaction with poorly crystalline minerals represented by the oxalate-soluble Fe and Al fraction. This evidence suggests that ligand exchange between mineral surface hydroxyl groups and negatively charged organic functional groups is a quantitatively important mechanism in the stabilization of SOM in acid soils. The results imply a finite stabilization capacity of soil minerals for organic matter, limited by the area density of reactive surface sites.

371 citations


Cited by
More filters
01 Jan 2007
TL;DR: The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
Abstract: The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief,

2,969 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Total Ozone Mapping Spectrometer (TOMS) sensor on the Nimbus 7 satellite to map the global distribution of major atmospheric dust sources with the goal of identifying common environmental characteristics.
Abstract: [1] We use the Total Ozone Mapping Spectrometer (TOMS) sensor on the Nimbus 7 satellite to map the global distribution of major atmospheric dust sources with the goal of identifying common environmental characteristics The largest and most persistent sources are located in the Northern Hemisphere, mainly in a broad “dust belt” that extends from the west coast of North Africa, over the Middle East, Central and South Asia, to China There is remarkably little large-scale dust activity outside this region In particular, the Southern Hemisphere is devoid of major dust activity Dust sources, regardless of size or strength, can usually be associated with topographical lows located in arid regions with annual rainfall under 200–250 mm Although the source regions themselves are arid or hyperarid, the action of water is evident from the presence of ephemeral streams, rivers, lakes, and playas Most major sources have been intermittently flooded through the Quaternary as evidenced by deep alluvial deposits Many sources are associated with areas where human impacts are well documented, eg, the Caspian and Aral Seas, Tigris-Euphrates River Basin, southwestern North America, and the loess lands in China Nonetheless, the largest and most active sources are located in truly remote areas where there is little or no human activity Thus, on a global scale, dust mobilization appears to be dominated by natural sources Dust activity is extremely sensitive to many environmental parameters The identification of major sources will enable us to focus on critical regions and to characterize emission rates in response to environmental conditions With such knowledge we will be better able to improve global dust models and to assess the effects of climate change on emissions in the future It will also facilitate the interpretation of the paleoclimate record based on dust contained in ocean sediments and ice cores

2,653 citations

Journal ArticleDOI
TL;DR: In this article, a review of the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils is presented.
Abstract: Summary Mechanisms for C stabilization in soils have received much interest recently due to their relevance in the global C cycle. Here we review the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils: (i) selective preservation due to recalcitrance of OM, including plant litter, rhizodeposits, microbial products, humic polymers, and charred OM; (ii) spatial inaccessibility of OM against decomposer organisms due to occlusion, intercalation, hydrophobicity and encapsulation; and (iii) stabilization by interaction with mineral surfaces (Fe-, Al-, Mn-oxides, phyllosilicates) and metal ions. Our goal is to assess the relevance of these mechanisms to the formation of soil OM during different stages of decomposition and under different soil conditions. The view that OM stabilization is dominated by the selective preservation of recalcitrant organic components that accumulate in proportion to their chemical properties can no longer be accepted. In contrast, our analysis of mechanisms shows that: (i) the soil biotic community is able to disintegrate any OM of natural origin; (ii) molecular recalcitrance of OM is relative, rather than absolute; (iii) recalcitrance is only important during early decomposition and in active surface soils; while (iv) during late decomposition and in the subsoil, the relevance of spatial inaccessibility and organo-mineral interactions for SOM stabilization increases. We conclude that major difficulties in the understanding and prediction of SOM dynamics originate from the simultaneous operation of several mechanisms. We discuss knowledge gaps and promising directions of future research.

2,332 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the source of the higher surface charge of BC compared with non-BC by mapping crosssectional areas of BC particles with diameters of 10 to 50 mm for C forms.
Abstract: Black Carbon (BC) may significantly affect nutrient retention and play a key role in a wide range of biogeochemical processes in soils, especially for nutrient cycling. Anthrosols from the Brazilian Amazon (ages between 600 and 8700 yr BP) with high contents of biomassderived BC had greater potential cation exchange capacity (CEC measured at pH 7) per unit organic C than adjacent soils with low BC contents.Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy coupled with scanning transmission X-ray microscopy (STXM) techniques explained the source of the higher surface charge of BC compared with non-BC by mapping crosssectional areas of BC particles with diameters of 10 to 50 mm for C forms. The largest cross-sectional areas consisted of highly aromatic or only slightly oxidized organic C most likely originating from the BC itself with a characteristic peak at 286.1 eV, which could not be found in humic substance extracts, bacteria or fungi. Oxidation significantly increased from the core of BC particles to their surfaces as shown by the ratio of carboxyl-C/aromatic-C. Spotted and non-continuous distribution patterns of highly oxidized C functional groups with distinctly different chemical signatures on BC particle surfaces (peak shift at 286.1 eV to a higher energy of 286.7 eV) indicated that non-BC may be adsorbed on the surfaces of BC particles creating highly oxidized surface. As a consequence of both oxidation of the BC particles themselves and adsorption of organic matter to BC surfaces, the charge density (potential CEC per unit surface area) was greater in BC-rich Anthrosols than adjacent soils. Additionally, a high specific surface area was attributable to the presence of BC, which may contribute to the high CEC found in soils that are rich in BC.

1,932 citations

Book
01 Jan 2013
TL;DR: In this article, the authors defined the sources of heavy metals and metalloids in Soils and derived methods for the determination of Heavy Metals and Metalloids in soil.
Abstract: Preface.- Contributors.- List of Abbreviations.- Section 1: Basic Principles: Introduction.-Sources of Heavy Metals and Metalloids in Soils.- Chemistry of Heavy Metals and Metalloids in Soils.- Methods for the Determination of Heavy Metals and Metalloids in Soils.- Effects of Heavy Metals and Metalloids on Soil Organisms.- Soil-Plant Relationships of Heavy Metals and Metalloids.- Heavy Metals and Metalloids as Micronutrients for Plants and Animals.-Critical Loads of Heavy Metals for Soils.- Section 2: Key Heavy Metals And Metalloids: Arsenic.- Cadmium.- Chromium and Nickel.- Cobalt and Manganese.- Copper.-Lead.- Mercury.- Selenium.- Zinc.- Section 3: Other Heavy Metals And Metalloids Of Potential Environmental Significance: Antimony.- Barium.- Gold.- Molybdenum.- Silver.- Thallium.- Tin.- Tungsten.- Uranium.- Vanadium.- Glossary of Specialized Terms.- Index.

1,684 citations